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Εισαγωγή 

 
Η παρούσα μεταπτυχιακή διατριβή παρουσιάζει μια νέα προσέγγιση στην προοδευτική 

δημιουργία περιεχομένου σε παιχνίδια ρόλων (RPG) μέσω την ενσωμάτωσης μεγάλων 

γλωσσικών μοντέλων (LLM). Η εργασία προσπαθεί να αντιμετωπίσει μια πρόκληση στην 

ανάπτυξη παιχνιδιών: την δημιουργία ενός πλούσιου, ισορροπημένου και διαδραστικού 

περιεχομένου το οποίο διατηρεί την προσοχή και την δεσμευση των παικτών, ενώ ταυτόχρονα 

απλοποιεί την διαδικασία και τους χρόνους ανάπτυξης του περιεχομένου. 

 

Η αρχιτεκτονική του συστήματος αποτελείται από δύο (2) κύρια στοιχεία: 

1) Έναν server ο οποίος επιμελείται των αλληλεπιδράσεων του LLM για την δημιουργία 

δυναμικού περιεχομένου που αποτελεί δομικό λίθο του παιχνιδιού. Αυτές οι δομές είναι ο 

κόσμος του παιχνιδιού, οι χαρακτήρες που τους χειρίζεται το παιχνίδι (NPC), οι 

αποστολές του παίκτη καθώς και οι μάχες που πρέπει να αντιμετωπίσει. Ο τελευταίος 

μηχανισμός του server είναι ένας μηχανισμός επικύρωσης και ελέγχου σφαλμάτων στις 

απαντήσεις του LLM. 

2) Το παιχνίδι, μέσω του οποίου ο παίκτης μπορεί να έχει αλληλεπιδράσεις με τα NPC, να 

εξερευνήσει τις τοποθεσίες του κόσμου, να πολεμήσει τις μάχες, να εξελίξει τον 

χαρακτήρα του, καθώς και να ολοκληρώσει διάφορες αποστολές. 

 

Η εφαρμογή αυτή αποδεικνύει ότι το σύστημα παράγει επιτυχώς συνεκτικούς 

φανταστικούς κόσμους με αφηγηματικά στοιχεία και λειτουργικά συστήματα. Παρατηρείται 

επίσης ότι το παραγόμενο περιεχόμενο προσφέρει σημαντική διαφοροποίηση σε κάθε παιχνίδι 

που πραγματοποιείται. 

 

Η υλοποίηση αυτή συμβάλλει στον τομέα της ανάπτυξης παιχνιδιών με την καθιέρωση 

ενός μεθοδολογικού πλαισίου για την παραγωγή περιεχομένου με χρήση τεχνητής νοημοσύνης 

(AI) εξισορροπώντας την δημιουργική παραλλαγή με τους δομικούς αυτούς περιορισμούς. Τα 

ευρήματα αυτά υποδεικνύουν πολλές υποσχόμενες κατευθύνσεις για την κλιμάκωση της 

διαδικαστικής παραγωγής περιεχομένου στην ανάπτυξη εμπορικών παιχνιδιών μέσω της 

εφαρμογής μεγάλων γλωσσικών μοντέλων (LLM) σε εξειδικευμένα αρχιτεκτονικά πλαίσια. 

 

Λέξεις κλειδιά: server, LLM, NPC, RPG, AI, δυναμικά δημιουργούμενο περιεχόμενο 
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Abstract 

 

This thesis presents a new approach to progressive content creation in role-playing games 

(RPG) through the integration of large language models (LLMs). The thesis seeks to address a 

challenge in game development: creating rich, balanced and interactive content that maintains 

player attention and engagement while simplifying the process and timescales of content 

development. 

 

The architecture of the software stack consists of two (2) main elements: 

1) A server that curates the LLM interactions to create dynamic content that is the building 

block of the game. These structures are the game world, the characters handled by the 

game (NPCs), the player's missions, and the battles the player must face. The last server 

mechanism is a validation and error checking mechanism for LLM responses. 

2) The game, through which the player can have interactions with NPCs, explore world 

locations, fight battles, evolve his character, and complete various missions. 

 

This implementation demonstrates that the system successfully produces coherent fantasy 

worlds with narrative elements and functional systems. It is also observed that the generated 

content offers significant differentiation in each game played. 

 

This implementation contributes to the field of game development by establishing a 

methodological framework for content generation using artificial intelligence (AI) by balancing 

creative variation with these structural constraints. These findings suggest promising directions 

for scaling procedural content generation in commercial game development through the 

application of large language models (LLMs) to specialized architectural frameworks. 

 

Keywords: server, LLM, NPC, RPG, AI, dynamic content generation  



 

6  

 

Table of Contents 
Table of Figures ................................................................................................................. 8 

Table of Abbreviations ....................................................................................................... 9 

Chapter 1 .......................................................................................................................... 10 

Introduction .................................................................................................................. 10 

Chapter 2: Literature Review ........................................................................................... 12 

2.1  The evolution of PCG in games ............................................................................ 12 

2.1.1 Historical Development of PCG ..................................................................... 12 

2.1.2 Methods and Approaches in PCG ................................................................... 12 

2.2 Limitations and capabilities of LLMs .................................................................... 13 

2.2.1 Recent advances in LLM Architecture............................................................ 13 

2.2.2 LLMs for Creative Text Generation................................................................ 14 

2.2.3 Structural Limitations and Challenges ............................................................ 14 

2.3 AI Integration in game development workflows.................................................... 15 

2.4 Validation and Quality Assurance for generated content....................................... 16 

2.5 Conclusion and research gap .................................................................................. 16 

Chapter 3: Technology Stack and System Architecture................................................... 17 

3.1 Technologies Used ................................................................................................. 17 

3.2 System Architecture ............................................................................................... 18 

3.3 Backend service design and implementation ......................................................... 21 

3.3.1 World Generation ............................................................................................ 22 

3.3.2 Chat and Context Management ....................................................................... 28 

3.4 Game client design and implementation ................................................................ 29 

Chapter 4: Content Generation & Management Methodologies ...................................... 32 

4.1 Prompt Engineering Methodology ......................................................................... 32 

4.2 Validation Methodology ........................................................................................ 33 

4.3 Context Management Methodologies .................................................................... 34 

4.4 Interdependent Content Generation Methodology ................................................. 35 

4.5 Error Recovery and Resilience Methodologies ...................................................... 36 

4.6 Integration Methodologies for Game Systems ....................................................... 37 

Chapter 5: Gameplay Implementation ............................................................................. 39 

5.1 Menus ..................................................................................................................... 40 

5.2 Game Entities ......................................................................................................... 42 

5.2.1 Player Characteristics ...................................................................................... 42 



 

7  

5.2.2 NPC ................................................................................................................. 43 

5.2.3 Enemies ........................................................................................................... 44 

5.2.3 Gem of Healing ............................................................................................... 45 

5.3 Game World ........................................................................................................... 45 

5.4 Locations ................................................................................................................ 46 

5.5 Encounters .............................................................................................................. 47 

5.6 Game Systems ........................................................................................................ 47 

5.6.1 Combat System ............................................................................................... 47 

5.6.2 Leveling System .............................................................................................. 48 

5.6.3 Quest System ................................................................................................... 49 

5.6.4 Inventory System............................................................................................. 51 

Chapter 6: Evaluation and Results ................................................................................... 53 

6.1 Response Time Analysis ........................................................................................ 54 

6.2 Performance stability.............................................................................................. 56 

6.3 Success Rates ......................................................................................................... 59 

6.4 Conclusion .............................................................................................................. 60 

Chapter 7: Future Directions and Conclusions ................................................................ 61 

7.1 Implications ............................................................................................................ 61 

7.2 Future Research Directions and possible applications ........................................... 61 

7.3 Conclusions ............................................................................................................ 62 

Citations ........................................................................................................................... 64 

Δήλωση Πνευματικών Δικαιωμάτων ............................................................................... 65 

 

  



 

8  

Table of Figures 
Figure 1: Client structure and other systems interactions ................................................ 18 
Figure 2: Backend system structure ................................................................................. 19 
Figure 3: Content Generation system ............................................................................... 19 

Figure 4: Game Logic system .......................................................................................... 20 
Figure 5: Backend Service Architecture .......................................................................... 21 
Figure 6: OpenAPI view of the endpoints ........................................................................ 22 
Figure 7: Prompt structure generation .............................................................................. 22 
Figure 8: Parsing of the response ..................................................................................... 23 

Figure 9: First cleaning attempt  of the response ............................................................. 23 

Figure 10: Data sanitization flow ..................................................................................... 24 

Figure 11: World elements structure ................................................................................ 25 
Figure 12: NPCs characteristics structure ........................................................................ 26 
Figure 13: Quests structure .............................................................................................. 26 
Figure 14: Encounters structure ....................................................................................... 27 

Figure 15: Chat request .................................................................................................... 28 
Figure 16: Conversation with NPC .................................................................................. 28 
Figure 17: Summarization code ....................................................................................... 29 

Figure 18: Views flow ...................................................................................................... 30 
Figure 19: Complete Game flow Diagram ....................................................................... 39 

Figure 20: Title Screen ..................................................................................................... 40 
Figure 21: World Selection or Generation screen ............................................................ 40 

Figure 22: World Generation Settings Screen.................................................................. 41 
Figure 23: Loading Screen where the world generation progress is displayed. ............... 41 

Figure 24: End screen with game summarization ............................................................ 42 
Figure 25: Character Movement ...................................................................................... 43 
Figure 26: Player and NPC chat window ......................................................................... 44 

Figure 27: Enemy stats ..................................................................................................... 44 
Figure 28: Gem of Healing restoring the player's health ................................................. 45 

Figure 29: Game Hub ....................................................................................................... 46 
Figure 30: Location view with an encounter .................................................................... 46 
Figure 31: Combat screen ................................................................................................ 47 

Figure 32: Level up stats increase notification................................................................. 48 
Figure 33: Quest screen containing all quests. ................................................................. 49 

Figure 34: Quest detailed view......................................................................................... 50 
Figure 35: Quest progress update ..................................................................................... 51 

Figure 36: Inventory view showing items, tooltips, character stats & equipped items.... 52 
Figure 37: Generation process response time distribution. .............................................. 54 
Figure 38: Conversation response time distribution. ....................................................... 55 
Figure 39: Response Time heatmap visualization............................................................ 56 
Figure 40: Conversation response time heatmap. ............................................................ 57 

Figure 41: Performance per endpoint ............................................................................... 58 
Figure 42: Conversation performance. ............................................................................. 59 
Figure 43: Success rate per world generation endpoint. .................................................. 60 
Figure 44: Success rates for conversation endpoint. ........................................................ 60 



 

9  

Table of Abbreviations 

 

 

Abbreviation Definition 

RoQ Realms of Quandria 

AI Artificial Intelligence 

PCG Procedural Content Generation 

RPG Role Playing Game 

TTRPG Tabletop Role Playing Game 

NPC Non Playable Character 

LLM 

 

Large Language Model 

Regex Regular Expression 

Exp Experience 

HP Health Points 

 

  



 

10  

 

Chapter 1 

Introduction 
 

Role-playing Games (RPGs) have long captured the hearts of gamers, with their worlds, 

narratives, character interactions, and gameplay. From the origins of tabletop role-playing games 

(TTRPGs) to digital games, these games offer players unique opportunities to explore detailed 

environments and make choices, resulting in multiple outcomes for every player. At the heart of 

this experience, alongside the gameplay, lies the content: the narrative threads, the character 

personalities, the missions, and the environment that bring these paper/virtual worlds to life. 

Traditionally, the content creation of games has been an intensely manual process. Game 

designers, writers, and artists create each element individually, from landscapes and cities to the 

personalities of every NPC. This manual approach produces highly curated experiences but faces 

limitations in terms of scale, variability, and resource requirements. A simple parallel quest can 

require days of writing, planning, and implementation, while larger story arcs can absorb months 

of development time. More often than not, the result is a compromise: rich but limited content 

that players will quickly exhaust, or larger worlds with less depth and more repetitive elements 

that can diminish player immersion and satisfaction over time. 

Procedural content generation (PCG) emerges as a partial solution to this challenge, using 

algorithmic approaches to create game elements such as terrain, dungeons, and object features. 

PCG has a vast field of applications, from simple things like procedurally generated textures all 

the way to procedurally generated stories. 

Recent developments in AI, especially in LLMs, allow for a new field for creating 

procedural content in video games. These LLMs demonstrate—most of the time—almost 

excellent abilities in understanding context, creating narratives, all while maintaining thematic 

consistency. However, integrating these technologies into practical game development contexts 

presents significant challenges. Language models operate with probabilistic outputs that lack the 

deterministic structure required by game systems. They can produce inconsistent, unbalanced, or 

mechanically incompatible content without appropriate constraints. In addition, the 

computational requirements of these models raise questions about performance in real-time game 

environments, and their contextual limitations may affect long-term narrative coherence. 

Realms of Quandria (RoQ) attempts to represent an innovative approach to address these 

challenges through a specialized "client"-server architecture that enables us to separate the game 

mechanics and implementation from the content creation. This separation allows each component 

to utilize technologies for its specific requirements while maintaining a relatively easy 

integration. Rather than attempting to integrate LLMs directly into the game's engine—which 

would add a significant overhead to the performance of the game—this project creates a dedicated 

service for the creation of the content with a specialized game "client". 

 

As mentioned, the architecture consists of two main components: 

● A backend webservice, orchestrating the LLM interactions to create the 

world and its elements. 

● A “client” that renders these elements into a complete game environment. 

The backend uses validation systems, iteration mechanisms, and context management techniques 

to ensure that the creative capabilities of the LLM conform to the requirements of the game 
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systems. Meanwhile, the client implements traditional RPG mechanics: exploration, combat, 

character evolution, and narrative interactions while maintaining communication with the service 

that produces the content. This design overcomes several key limitations of previous approaches: 

1. By moving the process-intensive LLM functions to a dedicated service, the game 

maintains satisfactory performance during gameplay. 

2. The use of validation and correction mechanisms ensures that the generated content 

adheres to game-compatible data. 

3. The asynchronous nature of the client-server communication allows for an almost 

seamless integration of dynamically generated content without disrupting the player 

experience. 

4. The service is client agnostic, meaning that with small modifications this service can work 

with every game engine. It is not tied to the specific implementation. 

This project attempts to be a contribution to the field of game development and the integration 

of AI. First, it establishes a framework for AI-assisted content generation that balances creativity 

and structural constraints required for a complete gaming experience. This implementation 

addresses a tension in PCG between flexibility and consistency, making available a model for 

future applications of LLM in game development. Second, it introduces techniques for correcting 

and validating the outputs of LLM in the field of game development. This ensures that the output 

of the model is usable in the game engine. Third, it demonstrates strategies for managing the 

context of the conversation between the player and the LLM whilst maintaining an illusion of 

memory and character personality for the NPCs. Finally, it provides a comprehensive case study 

that illustrates both the potential and practical considerations of using LLMs in game 

development. This case study aims to provide valuable insights for developers seeking to use 

similar technologies in their own projects. 

Through the exploration of AI-driven PCG, Realms of Quandria offers not just a technological 

demonstration, but a preview of how these technologies might affect game development, creating 

more varied and responsive virtual worlds while reducing the resource constraints that 

traditionally limit the scope and detail of RPGs. 
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Chapter 2: Literature Review 
 

2.1  The evolution of PCG in games 

The PCG field has evolved significantly over the past decades, from the early use of 

generating simple game elements to sophisticated systems capable of creating complex and 

interactive narratives and worlds. 

2.1.1 Historical Development of PCG 

The history of Procedural Content Generation in game development goes back to the early 

1980s when developers were looking for creative ways to overcome hardware limitations. Early 

games like Rogue (1980) and Elite (1984) showed how algorithms could generate vast dungeons 

and universes despite severe memory constraints. These early implementations served two 

purposes: to get around the technical limitations and to add game variety through randomized 

elements so no two playthroughs would be the same. 

The technical necessity that drove initial PCG adoption turned into a design philosophy. 

Games like Pac-Man used level variation to add replay value to something that has simple 

mechanics. After a period of limited use in mainstream development, PCG had a renaissance with 

empire building games like Civilization which introduced procedurally generated worlds as a 

fundamental part of the game rather than just a technical workaround. 

This history shows three enduring reasons for PCG implementation: technical constraint 

mitigation, gameplay diversification and development efficiency. While modern hardware has 

eliminated the first reason, the latter two still drive PCG adoption in modern game development 

– including our own approach. 

 

2.1.2 Methods and Approaches in PCG 

The procedural content generation (PCG) landscape has changed significantly since its 

inception, moving from simple algorithmic approaches to complex generative systems. Early PCG 

implementations relied on constructive methods—predetermined rules combined with 

randomness to produce variations on designer-specified patterns. While good for simple tasks like 

terrain generation, these were limited in output quality and struggled with complex content. 

As the field became more familiar, developers introduced more advanced techniques to 

address these limitations. Search-based PCG methods came along, using evolutionary algorithms 

and other optimization techniques to explore the possibility space while targeting specific design 

goals. Constraint-based systems then enforced structural rules to ensure playability and balance. 

Both were big advances in generating complex, functional game content while still having 

designer control. 

The latest methodological evolution has been the integration of machine learning into the 

PCG pipeline. This is more than a technical advancement—it's a fundamental shift in how 
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generative systems relate to designer intent. Traditional approaches explicitly encode design 

knowledge through rules and templates, basically translating human creativity into algorithmic 

procedures. Machine learning methods extract design patterns implicitly from existing content, 

learning to recognize and reproduce stylistic elements without requiring explicit formalization. 

This shift from explicit to implicit design knowledge has big implications for the scope 

and flexibility of PCG systems. Rule-based approaches are great at generating content that follows 

well-understood design principles but struggle with adaptation. Machine learning methods can 

produce more unexpected creative output but traditionally require a lot of domain specific training 

data—a big limitation for game specific applications where suitable datasets might be scarce. 

Our language model approach is a natural extension of this methodological trajectory, 

using the broad training of large language models to overcome the data limitation that has held 

back previous machine learning approaches. Rather than requiring extensive game specific 

datasets, these models transfer knowledge from their general text training to generate coherent 

game content with minimal domain adaptation. This allows for the production of complex 

narrative elements, character backgrounds and quest structures that are both coherent and 

creative—exactly the content categories that have been most resistant to traditional PCG methods. 

The progression towards more advanced generative techniques is a long standing goal in 

PCG research: balancing generative freedom with structural control. We continue this tradition, 

using the creativity of language models and validation frameworks to ensure outputs meet the 

system requirements. 

2.2 Capabilities of LLMs 
 

LLMs demonstrate remarkable abilities at text generation; that comes with significant 

limitations that must be addressed in order to effectively produce game content. 

 

2.2.1 Recent advances in LLM Architecture 

The development of transformer-based architectures has changed natural language 

processing (NLP) beyond recognition, creating models with profound scale and capability. 

Vaswani, who introduced the transformer architecture, describe its core innovation: 

"The Transformer architecture relies entirely on attention mechanisms to draw global 

dependencies between input and output, replacing the recurrent layers most commonly used in 

encoder-decoder architectures with multi-headed self-attention."[1] 

This change in architecture indicates the capabilities of modern LLMs, including those 

implemented in our system, by using more processing-effective long-range dependencies in text—

something that is crucial for maintaining narrative coherence. The development of these models 

has produced capabilities that were not seen in their smaller predecessors. This phenomenon is 

documented by Brown in their work on GPT-3: 

"We find that scaling up language models greatly improves task-agnostic, few-shot 

performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning 



 

14  

approaches. Specifically, we find that increasing model size improves performance in a log-linear 

fashion across tasks, with the biggest improvements occurring in the ability to perform tasks that 

require multi-step reasoning or in-context learning."[2] 

These scaling qualities are very important for creating gaming content, as such jobs demand 

complicated reasoning across interconnected aspects like characters, locations, and events. 

2.2.2 LLMs for Creative Text Generation 

LLMs have shown they can generate some pretty cool text, which is useful for game 

development. They're great at writing basic stories, dialogues and descriptive text that can enhance 

the gaming experience. However, since their output is based on probabilities, the quality can vary 

and there can be coherence issues especially when generating longer text without clear guidance 

or constraints. 

Our research on the Realms of Quandria system confirmed this. We found that the raw 

output from language models need well-structured prompts and post-processing to get consistent 

quality of game content. The creative potential of these models is also evident in interactive 

narrative scenarios. They keep character consistency and narrative coherence across multiple 

interactions, so they're great for dynamic NPC behaviors and dialogue systems. This opens up 

some possibilities for more responsive and lifelike game characters. 

However, despite these benefits, language models struggle with long term narrative 

planning and causal reasoning. They can generate text that seems coherent in the short term but 

can contradict established facts or not maintain overall narrative coherence through an entire 

gameplay session. These findings have directly influenced our design for context management 

and validation so we can use the benefits while addressing the challenges. 

 

2.2.3 Structural Limitations and Challenges 

Despite all the incredible capabilities, language models have significant limitations that 

need to be addressed when integrating them into game systems. Neural text generation has 

problems of repetition, contradiction and hallucination – and those problems get worse the longer 

the text is generated. Those aren't flaws in specific model architectures but in how the models are 

trained and how they generate text. 

Those observations directly informed our system design decisions, particularly our 

implementation of validation layers to detect and correct inconsistencies in model generated 

content before it hits the player. 

Another big challenge for game applications is the context window of current language 

models. Those models can only "remember" a finite amount of previous text, which limits their 

ability to be coherent across long interactions or narratives. When conversations or storylines go 

beyond that window the models lose access to earlier information and you get contradictions or 

narrative breaks. 
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That's what guided our development of the ContextManager component, which 

implements conversation summarization techniques to keep NPC interactions coherent despite 

those architectural limitations. By compressing and prioritizing contextual information our system 

can support much longer and more complex player-NPC interactions than would be possible with 

the raw limitations of the underlying models. 

2.3 AI Integration in game development workflows 

AI-generated storytelling has come a long way in game development research. 

Computational storytelling systems tend to focus on three main areas: plot, space and character. 

One of the remaining challenges is to combine these elements into wholes that balance storytelling 

requirements with gameplay constraints [3]. 

This challenge directly affects our architecture. Our system has separate generation 

services for the world structure, NPCs, quests and encounters and ensures consistency through 

carefully designed interdependencies and validation processes. By separating these concerns 

while keeping them related we can manage the complexity of creating coherent game worlds. 

There is a fundamental tension between narrative coherence and player agency in 

interactive storytelling. Different approaches prioritize these things differently – some systems 

are very author-driven and limit player choices to maintain narrative structure, others go for 

emergent gameplay at the expense of structured narrative arcs. 

We have this same tension in our system. We need to balance the creative variation 

language models provide with the structural requirements for gameplay. Our solution is to 

implement JSON schema validation and correction pipelines that ensure generated content stays 

within playable boundaries while still allowing for creative diversity and surprise. By 

acknowledging and designing for these inherent tensions our system tries to get the benefits of 

AI-generated storytelling while mitigating the risks that could harm the gameplay. 

Despite all the great demos in research, commercial games have several barriers to entry 

including technical integration, quality assurance and design team resistance. To succeed you need 

systems that complement and do not replace designer expertise – tools that expand the possibilities 

not automate the existing workflow. This is how we approach development, we see language 

models as augmentative tools within a structured framework not autonomous replacements for 

human design decisions [4]. 

Our system keeps the designer's creative judgment and uses AI to boost productivity and 

explore the creative space that would otherwise be missed. The computational requirements of 

language models present additional challenges for game applications. Different models have very 

different inference latency and resource requirements, model size is a big but not the only factor 

that affects performance. Response times for text generation can be under a second to nearly 5 

seconds across different models, that's a big obstacle for real-time gameplay integration. These 

performance constraints shaped our client-server architecture. 

By isolating the resource heavy language model operations in a dedicated service and 

keeping the gameplay responsive to the client we can leverage the AI capabilities without 

compromising the player experience. This separation allows us to use the powerful AI without 
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sacrificing the gameplay responsiveness, it's a more sustainable way to integrate AI in interactive 

entertainment. 

2.4 Validation and Quality Assurance for generated content 

To ensure the quality of the output of the LLM and to validate said output is one of the 

most critical challenges. Evaluating content generated by PCG methods has different challenges 

compared to other AI applications. In many AI fields, success can be measured through clear 

metrics like accuracy or performance benchmarks. However, when it comes to game content 

evaluation, we must also consider the subjective elements of player experience alongside 

functional requirements. 

This evaluation challenge affects our validation strategy. Our system employs both 

structural checks to ensure functional requirements are satisfied and semantic validation processes 

to evaluate narrative coherence and player experience factors. This dual approach enables us to 

confirm that the content not only integrates well within the game's systems but also achieves the 

desired emotional and narrative effects. 

Effective PCG systems should demonstrate reliability by consistently producing playable 

content without significant flaws. They must allow for controllability, enabling designers to 

influence the generated artifacts rather than relying solely on random outcomes. Also, they should 

show expressivity by creating diverse content that explores the intended design space while 

adhering to appropriate limits. 

These criteria offer a useful optic for evaluating our own system's effectiveness; they 

underscore the critical balance we need to strike between the creative expressivity provided by 

language models and the reliability demands of functional game systems. By explicitly addressing 

these criteria in our design and evaluation processes, we can enhance our approach to AI-assisted 

content generation for games.. 

2.5 Conclusion and research gap 

This short review highlights the advances in both PCG and the capabilities of LLM, while 

also revealing some gaps regarding their integration to games. While the language models show 

great potential for creating coherent and diverse text, their direct and immediate application to 

games provides some struggles in terms of structure, performance as well as the consistency of 

the responses. Previous work done by others has already explored many aspects of AI-assisted 

game development; while comprehensive designs for integrating LLMs into game systems are 

still being explored and developed. 

This research aims to address this lack of exploration by developing and evaluating a 

"client"-server architecture that leverages language models for content creation, while maintaining 

the required characteristics for a functional game. By applying systematic validation mechanisms 

and context management techniques our system addresses the practical challenges mentioned 

above, while also providing a demonstration of the potential the LLMs have to transform game 

content creation.  
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Chapter 3: Technology Stack and System Architecture 
 

As mentioned above the system follows a “client”-server architecture with a clear 

separation of concerns. The server manages the generation of the world through modular services. 

Each service has a retry mechanism with penalties and an exponential backoff mechanism for 

better resilience. The system also has a context manager for the conversations with each NPC, in 

order to provide conversation summarization. Each service output is validated via a custom 

validation mechanism in order to have processable data for the client (game) to use. 

3.1 Technologies Used 

FastAPI [5] is a modern Python web framework that enables developers to build high-

performance APIs quickly with built-in data validation and serialization capabilities. It leverages 

Python type hints to automatically validate, serialize, and document our API requests and 

responses.  

Swagger [6], now officially known as OpenAPI, is a specification for machine-readable 

interface files that describe, produce, consume, and visualize RESTful web services. The 

OpenAPI specification defines a standard, language-agnostic interface that allows both humans 

and computers to discover and understand the capabilities of a service without requiring access to 

source code or documentation.  

FastAPI automatically generates OpenAPI documentation based on your Python type 

annotations, function parameters, and docstrings without additional work. When we build an API 

with FastAPI, we get an interactive Swagger UI that lets developers explore and test our API 

directly in the browser. This integration creates a seamless development experience where our 

API documentation stays in sync with your code as it evolves. FastAPI's creator, Sebastián 

Ramírez, designed the framework with developer experience in mind, making it possible to build 

well-documented, standards-compliant APIs with minimal boilerplate code. 

Python Arcade [7] is a modern, easy-to-use library designed for creating 2D video games 

with compelling visual effects and physics simulations. Unlike more complex game engines, 

Arcade strikes a perfect balance between simplicity and power, making it ideal for beginners yet 

capable of creating sophisticated games. The library provides intuitive ways to handle sprites, 

animations, and collision detection while maintaining Python's readability and approachability. 

Arcade was developed by Paul Vincent Craven as an educational tool to help students learn 

programming through game development, focusing on clean code structure and object-oriented 

principles. Game development with Arcade follows a logical pattern of initialization, game loop 

updates, and rendering functions that mirror professional game development practices. 

Tiled [8] is an open-source map editor primarily designed for creating 2D game levels and 

environments. It allows developers and designers to build complex game worlds by arranging 

graphical tiles in layers on a grid, supporting orthogonal, isometric, and hexagonal maps. The 

program features a user-friendly interface with tools for drawing, filling, and selecting tiles, while 

also offering advanced capabilities like custom properties, automation through scripting, and 

support for various export formats compatible with numerous game engines and frameworks. 
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3.2 System Architecture 
The implementation consists of four major systems: 

1) The Client system as seen in Figure 1. 

2) The Backend system as seen in Figure 2. 

3)  The Content Generation system as seen in Figure 3. 

4) The Game Logic system as seen in Figure 4. 

 

 
Figure 1: Client structure and other systems interactions 

The Client Architecture system provides the player-facing interface of the RPG game, 

handling all visual representation and user interaction. The Arcade Client serves as the main 

application container, managing the game window, processing keyboard and mouse inputs, and 

synchronizing with the backend via HTTP requests. It orchestrates the Game Views that present 

different aspects of gameplay to the user. The UI Components include reusable elements such as 

dialogue boxes, inventory slots, stat displays, and combat interfaces that provide consistent visual 

styling and interaction patterns throughout the game. This architecture follows a hierarchical 

design where the Arcade Client renders the appropriate Game Views based on player context, 

which in turn contain and manage various UI Components. This system communicates with the 

Game Logic layer to translate player actions into gameplay effects and render the current game 

state in a visually appealing and intuitive manner. 
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Figure 2: Backend system structure 

The Backend system serves as the server-side infrastructure for the RPG game, with the 

FastAPI Server functioning as its central hub. The World Generator creates dynamic game 

content including maps, NPCs, quests, and encounters when players request a new game world. 

The Context Manager maintains conversation history between players and NPCs, intelligently 

summarizing lengthy dialogues to preserve memory while retaining important context. The NPC 

Conversation System handles dialogue generation and responses, creating realistic interactions 

that can advance quest objectives. The JSON Validator ensures data integrity by validating the 

structure of information flowing between components, preventing errors that could arise from 

malformed data structures. Together, these components form a robust backend that supports the 

game's dynamic content generation and persistent state. 

 

 
Figure 3: Content Generation system 
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The Content Generation system is the creative engine of the RPG game, responsible for 

procedurally generating engaging game content. At its core, the Language Model processes 

natural language inputs and generates coherent, contextually appropriate outputs for game 

elements. The World Generator interfaces with this model to create complete game worlds with 

consistent themes, locations, characters, and storylines. The Generation Queue manages 

processing prioritization, ensuring requests are handled efficiently even during high-demand 

periods, while preventing the system from becoming overwhelmed. The NPC Conversation 

System leverages the Language Model to create dynamic, contextually aware dialogue that 

responds to player inputs and maintains character consistency across interactions. These 

components work together in a pipeline architecture where content requests flow through the 

Language Model, are processed asynchronously via the queue, and return results to the 

appropriate game systems, creating a rich, ever-evolving game world that feels responsive and 

alive. 

 

 
Figure 4: Game Logic system 

The Game Logic system encompasses the core gameplay mechanics and rules that drive 

the RPG experience. The Game Systems module serves as the central coordinator for all 

gameplay functionality, maintaining the game state and ensuring all subsystems work in 

harmony. The Quest System tracks objectives, manages progression, and provides rewards when 

conditions are met, driving the narrative flow of the game. The Combat System handles turn-

based encounters, calculating damage, managing combat actions like attack and defend, and 

determining outcomes based on character stats and randomization. The Inventory System 

manages the player's possessions, equipment, and consumable items, applying appropriate stat 

modifications when items are equipped or used. The Leveling System tracks player experience, 

handles level-up events, and applies stat increases as players progress, creating a sense of 

character development and growth. These interconnected systems process player actions from the 

Game Views, update the game state accordingly, and provide feedback that is rendered by the 

Client Architecture, creating a cohesive gameplay experience that rewards strategic thinking and 

exploration. 
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3.3 Backend service design and implementation 
 

The backend is developed using FastAPI framework which makes it ideal for building 

real-time data applications and other high-performance applications; just like the PCG service 

with the use of a LLM.  

 
Figure 5: Backend Service Architecture 

The backend consists of eight endpoints: 

• /model_name : A GET request to return to the user which 

LLM model is used 

• /generate_world : A POST request that generates some 

crucial information for the game world 

• /generate_npcs: A POST request that generates the NPCs 

populating the world 

• /generate_quests: A POST request that generates the quests 

that the player has to complete 

• /generate_encounters: A POST request that generates the 

encounters the player has to overcome. 

• /generate_complete_world: A POST request that is the 

combination of the other four requests 

• /current_world: A GET request that returns the complete 

generated world 

• /conversation: A POST request that allows the player to 

converse with each NPC 
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Figure 6: OpenAPI view of the endpoints 

3.3.1 World Generation 

The complete generation of the world takes four steps to complete. First, it generates the 

basic world structure. This is done by providing the LLM with some basic information about the 

world we want to create; we implemented it in a way that even though the user input is minimal, 

the language model is free to generate a completely custom world. 

The fields that are required for the generation of the world consist of the genre, the number 

of locations, the setting type, the tone of the world, and lastly the overall complexity. When the 

request is sent, the server attempts to generate the world structure as seen in Figure 7 

 

 
Figure 7: Prompt structure generation 
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 First we initialize a mechanism that will allows us to retry the world generation with a 

specific penalty for the LLM in case it does not produce the expected outcome. Then we build 

the prompt that we will use for the language model to get our world data (more on that is explained 

in Chapter 4.1). In the event that the response is incorrect, we retry up-to five times, with different 

temperature and top-p values (both are explained in Chapter 4.5). When the model creates a 

response we do a series of parsing and validation tests. 

 

 
Figure 8: Parsing of the response 

 First we try to parse the response; this means we try to get the JSON object from the 

response. The response sometimes regardless of the specific prompt and rules set, can be in a 

different format or with extra text that will make it un-processable. To combat this we have 

implemented a regular expression (regex) based mechanic that tries to clean the data as seen in 

Figure 9 

 

 
Figure 9: First cleaning attempt  of the response 
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Then we proceed -regardless of whether its successful or not- with validating the data. The 

process can be seen in Figure 10. 

 
Figure 10: Data sanitization flow 

  The response may contain extra fields that are not wanted (e.g., in the world generation, it 

may have a field called "weather") or not have fields that are required (e.g., in the encounters, an 

encounter may not have a damage value for the enemies). To combat that, we use a predefined 

structure that the response must adhere to. Through the sanitization process, any fields that are not 

present in our structure are removed, and if a required field is not present, it is initialized with a 

default value (e.g., damage = 5). This process is done recursively in order to achieve sanitization 

for all nested objects. 
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If the sanitization process is unsuccessful, we throw an error and the generation for this 

particular service (e.g., Encounters) fails, resulting in an empty object in our game. If the 

sanitization process is successfully completed, we append the JSON object to a file and return it. 

The world JSON has the structure seen in Figure 11: 

 

 
Figure 11: World elements structure 

When the world generation is complete, we take the JSON object and use it for the 

remaining three requests. The generate NPCs service takes the JSON and before starting the same 

process it requires an additional input from the user, the number of NPCs to be present in the 

game. When the NPCs are generated, their characteristics are stored in a file that is loaded into 

memory, giving us the ability to start conversing with them. Then the exact same flow as 

mentioned above is executed resulting to a JSON for the NPCs can been seen in Figure 12: 
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Figure 12: NPCs characteristics structure 

After the NPC generation we generate the quests, taking as input the world JSON, the 

NPC JSON -because in some quests we have to interact with the NPCs- and the number of quests 

we want. The final JSON structure can be seen in Figure 13: 

 

 
Figure 13: Quests structure 
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Finally after the generation of the quests we create the encounters. The encounter service 

requires the world JSON, the quests JSON and the number of encounters. This generates an object 

as seen in Figure 14: 

 

 
Figure 14: Encounters structure 

 It is important to note that all the values in these objects are determined and generated 

entirely from the LLM e.g. we do not provide any input regarding to the  model regarding the 

disposition of the NPC, or the steps required to complete a quest. 
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3.3.2 Chat and Context Management 
 

One of the key points of our implementation is the ability to chat with the LLM which 

assumes the persona of each NPC created, for each different player. Each NPC creates a file that 

stores all its conversations with each player. When the player initiates a conversation we send a 

request like the one shown in Figure 15: 

 

 
Figure 15: Chat request 

 The first thing that happens is we load any conversation for this NPC/player combination 

into the memory; then we create a prompt that contains the question and we send it to the model. 

When the model responds we add the response in the conversation history (both in-memory and 

in the file) and check if the length of the whole conversation history exceeds a predefined context 

size. If not we return the response.  

 

 
Figure 16: Conversation with NPC 

If it exceeds the size, we use the context manager which with a predefined reduction 

range (e.g. 40%-60%) and a context size (e.g. 10000) create a prompt to the LLM asking it to 

summarize the history. Finaly the summarized history updates the current history both in-
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memory and in the file. 

 

 
Figure 17: Summarization code 

 

This approach allows us to provide the illusion of NPC memory, by shortening lengthy 

conversations while also keeping the important points of the conversations. This is done to 

manage both system memory and model memory (context) constraints and to enhance the player 

experience through persistent dialogues. 

3.4 Game client design and implementation 

The game client for Realms of Quandria is developed using the Python Arcade library, a 

library used mostly for creating 2D games. It provides an API that is easy to utilize and build 

upon, allowing for relatively easy development. Our implementation follows a component-based 

architecture where the game elements are developed as independent but interconnected modules. 

The design follows a modular architecture that separates concerns and promotes 

maintainability while enabling rich gameplay mechanics. This chapter examines the technical 

design decisions, implementation strategies, and architectural patterns employed in the 

development of the game client. Our game architecture consists of the view system, which 

manages the different game screens and user interfaces, the model system which defines the game 

entities and their respective behaviors, the systems layer which implements all the game 

mechanics such as the combat, the inventory and the quests. We also have the world generation 
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component, which interfaces with our server to generate the game content. Finally, we have a map 

management implementation which loads maps created with an open source program called Tiled. 

The View management is built on Arcade’s view framework, allowing use to have clean 

transitions between different game states and screens. Our implementation uses a hierarchical 

approach where specialized views are handling specific aspects of the gameplay. A high level 

view of our flow can be seen in Figure 18. 

 

 
Figure 18: Views flow 

Many of the game's core functionalities are broken down into several Systems. The combat 

system handles the turn-based combat where there are two basic types of moves. The flow of the 

turns is as follows: first the player, then one of the enemies, then the player and so on. Both the 

player and the enemies in their turn either block or perform an attack. If the player attacks, they 

apply their damage to the enemy they clicked. If the player decides to defend, the damage is 

reduced based on the formula total_defense = base_defense + (base_defense * 0.6). If the enemy 

defends, the total damage they receive is: total_damage_taken = player_damage – (player_damage 

/ 2). 

The reward and leveling systems are fairly simple. The leveling system manages when the 

player levels up and what happens upon level up. There is a simple formula to find what attribute 

of the player increases upon level up. The player's health increases every level. Beyond that, on 

even levels (e.g., 2, 4, 6, etc.) the damage is increased. On odd levels (e.g., 1, 3, 5, etc.) the defense 

is increased, and every 10 levels all attributes are increased. Any experience remaining upon level 

up is carried over to the next level. The reward system gives the rewards of any encounter and 

quest completed. These rewards include items, gold, and experience. 
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The inventory system handles everything regarding the storing of the items. It creates the 

items with their attributes and some basic icons, it provides us with the ability to equip, unequip, 

or sell the items and assign if the items (depending on their type) are stackable or not. 

Lastly, we have the quest system, the most complex among our systems. It begins by 

parsing and categorizing quest data during initialization, breaking down quest steps into actionable 

objectives based on keywords. It identifies three types of objectives: NPC interactions (triggered 

by the keywords: "talk", "speak", "find", "meet", "ask", "deliver", "give", "bring", "return", 

"interact"), location visits (identified by the phrases: "go to", "visit", "travel", "find", "explore", 

"reach") and encounters (containing the combat terms: "defeat", "kill", "slay", "fight", "battle", 

"combat", "vanquish", "engage"). During gameplay, the system continuously monitors player 

activities through specialized checking methods. When a player interacts with an NPC, the system 

uses a method to compare the NPC's name against existing objectives, using both exact matching 

and partial word matching for flexibility. Similarly, when players visit locations or complete 

combat encounters, the respective checking methods analyze if these actions fulfill any pending 

quest objectives. The matching algorithms are intelligent enough to handle variations in naming 

and context. When an objective is completed, the system updates the quest's step progress, 

potentially marking entire quests as complete when all steps are finished. It manages quest rewards 

through integration with the reward system, tracks recently completed quests for UI notifications, 

and provides mechanisms for developers to manually complete quest steps when needed. The 

system culminates by monitoring overall quest completion, triggering the game's ending sequence 

when all quests have been completed, creating an end to the player's journey. 
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Chapter 4: Content Generation & Management Methodologies 
 

This chapter focuses on the methodological approaches underlying the technical 

implementation presented in Chapter 3. While the previous chapter detailed the architectural 

components and their implementation, this chapter examines the reasoning, theoretical 

foundations, and experimental iterations that led to our chosen approaches. We explore the 

methodological challenges unique to applying large language models in procedural content 

generation and present a framework for evaluating and improving generative systems for games.  

 

The basic methodological challenges addressed are: 

1) Designing effective prompts that balance creativity with structural constraints. 
2) Developing validation mechanisms in order to maintain the content integrity. 
3) Formulate context management techniques to maintain content integrity. 
4) Establishing workflows for content generation and integration. 
 

Throughout this chapter, we will analyze the design decisions that shaped our 

implementation, discussing alternative approaches that were considered and the rationale behind 

our final solutions. 

 

4.1 Prompt Engineering Methodology 
 

Prompt engineering is the base for a successful LLM interaction, establishing a boundary 

between creative variation and game-usable content. Our methodology evolved – through trial 

and error –  from simple and unstructured to sophisticated and structured prompts. 

 

We adopted a systematic approach to our prompt engineering, moving through a multi-

phase process of development: 

1) Unstructured Prompts: Our initial experiments involved using minimal restrictions, 

simply asking the model to, "generate a fantasy world," or "create some NPCs for an 

RPG." While these attempts resulted in a creative output, the model generated content 

that was extremely inconsistent—often skipping required fields or including irrelevant 

text. 

2) Template-Based Prompts: We then tried providing basic templates with field names, 

but we noticed that the LLM still struggled with consistent formatting and included 

elements outside the requested structure. 

3) Example-Driven Prompts: By including complete examples in our desired format, we 

achieved better consistency but we encountered new problems with filed validation 

and type constraints. 

4) Constraint-Explicit Prompts: Our final approach uses a combination of structural 

examples with explicit rule statements, type declarations and field requirements 

specifications. 

 

By transitioning from generic instructions to explicit examples with well-defined 

constraints we improved the output consistency up to 80% [9]. 
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A big challenge was finding the balance between creative freedom and structural 

constraints. Too many constraints reduce the diversity and creativity of the generated content, 

while too few constraints produce unusable outputs. We overcame this issue by creating a 

constraint categorization framework of Essential Structural Constraints, which are non-negotiable 

requirements for the game to function (e.g., field presence, data types, etc.), and Content 

Coherence Constraints, which are guidelines encouraging thematic consistency and logical 

relationships. For example, in world generation, we used strict constraints to ensure that all the 

locations had all relevant fields (name, description, and purpose) of the appropriate data types 

(string). However, we provided minimal restrictions on the narrative connections, allowing the 

LLM to create the relationships between locations and other world elements. 

Besides the general prompts structure, we approached each part of the world generation 

(world, quests, NPCs, encounters) with specialized prompts. For World Structure Generation, we 

focused on the thematic consistency and the description of the world. In NPC Generation, we 

focused on the speech style, the history as well as the characteristics of each NPC (e.g., emotions, 

disposition). Quest Generation involved structure prompting with step-based action specification. 

For Encounter Generation, we focused on creating prompts that balance enemy diversity and 

scaling constraints. 

With trial and error, we identified the best possible prompt setups for each part of the world 

generation process. For instance, we found that in Quest steps generation, if we provide some 

keywords regarding the type of step, we have better chances to create resolvable steps, resulting 

in our ability to complete quests. 

4.2 Validation Methodology 

 
While Chapter 3 covers the technical implementation of our validation mechanism and 

this chapter describes the methodological strategies that informed the design fix and validation 

development stage. 

 

We developed four distinct validation layers: 

1) Structural Validation: validates the existence of required fields and the correct field 

type. 

2) Content Validation: validates the relationships between elements (e.g., ensuring 

quests reference existing locations). 

3) Balance Validation: validates numerical properties to ensure gameplay mechanics are 

followed (for example, damage from enemy actions is supposed to inherently scale). 

4) Experience Validation: validates the generated content for player experience quality. 

 

Using layers of validation means that every layer is designed to have focus on a discrete 

aspect of quality rather than seeking to hold a single layer accountable for all deviations within 

the content. When a validation failure occurs the validation system can apply fixes that will 

correct or accommodate the error rather than reject the content outright. 

 

Our validation schema was developed through an iterative process informed by failure 

analysis. Rather than trying to anticipate all of the possible model failures beforehand, we: 

• Collected examples of failed generations from our early experiments. 
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• Categorized the patterns of failures into types. 

• Developed validation rules based on observed failure patterns. 

• Added specific recovery mechanisms for common patterns of failure. 

 

This process resulted in a schema that was developed to account for the specific failure 

modes of language models versus generic patterns of data validation [10]. For example, we 

discovered that the LLM would frequently return numeric values as a string and added specific 

type checking rules to match this pattern. 

 

An innovative aspect of our methodology is the bidirectional relationship between validation and 

prompt engineering. Rather than treating these as separate concerns, we used validation failures 

to systematically improve prompts: 

• Identify common validation failures across multiple generation attempts. 

• Determine whether the failure originates from the prompt or some limitation of the LLM. 

• For prompt-based failures, add explicit constraints addressing the specific issue. 

• For model limitations, implement automated correction in the validation layer. 

 

This opened up the system to systematic improvement through each generation failure 

leading to better outcomes in the future. We interpreted this as a co-evolution of improvements 

of both prompts and validation rules, with each field of domain contexts evolving to limit the 

limitations of the other whilst producing improvements in their own. 

 

4.3 Context Management Methodologies 
 

Dynamic NPC interactions require a context management to maintain thematic coherence 

and character consistency. Our methodological approach to this extends beyond the technical 

implementation as is described in Chapter 3. 

 

A key methodological insight in our context management approach is the abstraction of 

"memory" into multiple layers: Surface Memory, which consists of recent conversation turns 

maintained verbatim; Condensed Memory, which includes summarized historical interactions; 

Trait Memory, which maintains persistent character attributes reinforced in each interaction; and 

World Memory, which contains stable facts about the game world provided as context. Our 

exploration of this approach revealed that LLMs handle conversation memory most effectively 

when personality traits are continuously reinforced even as conversation history is compressed. 

This finding informed our practice of including complete character trait descriptions in every 

interaction prompt, ensuring personality consistency despite context window limitations. 

 

We adapted our strategy for conversation summarization through an experimental process 

of different summarization methods. We began with Extraction-Based Summarization and 

initially tested the extraction of "important" turns using a procedure of keyword analysis, but we 

quickly realized the extraction method was not capturing the conversational flow. We then moved 

to testing a strategy of Fixed-Ratio Compression that worked by applying fixed compression 

ratios (i.e., ratios that reduced the conversation excerpts to 30% of the original length), but we 

realized appropriate levels of compression changed depending on the density of the content. Our 

final trial method was called Range-Based Adaptive Summarization and it worked using a target 
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reduction range of 30-70%. In this context, the summarizer applied greater compression based on 

lower conversational density, and then applied less compression to the more dense improvements 

of knowledge. When evaluated experimentally, the range-based adaptive summarization method 

outperformed the fixed approaches in terms of maintaining coherence in the conversations, and 

the flexible process empowered the system to make contextually-appropriate decisions about 

what information to retain. 

 

Although in-game functionality could have been accomplished through just simple in-

memory storage, we intentionally designed a file-based mechanism for conversation persistence 

to allow for the opportunity to see into the development process. There were some assets to the 

method we employed: allowing for review of how conversations progress over multiple play-

throughs, enabling sorting through a player's filtered and unfiltered experience concerning 

whether conversations maintained appropriate coherence, creating an annotatable dataset to assist 

in improving the system for future iterations, and supporting human analysis of the dialogue 

created by AI for assessing qualitatively whether it was of acceptable quality. Our method reflects 

the broader methodology of "observable AI" methodology that our development emphasized: 

having a means to be transparent about the behavior of the AI to enable an additional layer of 

review during the development phase. The file-based persistence mechanism allowed to witness 

how conversations evolved over time and how they followed patterns that could then be useful 

for informing our next improvements to the system. 

 

4.4 Interdependent Content Generation Methodology 
 

The sequential generation of world elements with explicit interdependencies represents 

one of our most significant methodological contributions. This approach the "coherence 

challenge" in procedural content generation—the challenge of creating connections between 

independently generated game elements [11]. 

 

The process that we used began with a dependency analysis of traditional RPG content to 

reveal the natural relationships between the elements of the game: the world conveys the setting, 

tone, physical locations; NPCs occupy positions in the world and refer to particular locations in 

the world; quests involve both NPCs and locations as participants and destinations for quests; and 

encounters take place in a specific locations and may or may not link in some way to the quest. 

This analysis recognized a natural dependency chain which helped to inform us to produce 

content in a sequential manner, building on and extending content rather than simply producing 

elements in isolation. We assessed this dependency chain approach against other content 

generating methodologies: a parallel approach (producing all content simultaneously and then 

post-process the content to make the links); a bi-direct approach (having quests first, and 

generating NPCs and locations as support); and player-driven approach (producing a response to 

the player actions). In testing the methodology, we found that sequential generation of content, 

based on explicit dependencies provided the most coherent results while still providing enough 

variance between generating sessions.  

 

A key focus of our method is managing references from generated entities. We use explicit 

reference passing between stages of generation, where each stage is provided with the complete 

context through the prior stages of generation, allowing for more natural reference to form 

without attempting to establish connections through complicated post-processing. This is 
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different than PCG approaches, which generate content in disconnected systems or processes and 

later try to establish connections through mapping or transformation. By generating the content 

in the contextually aware sequence, our system generates game elements that integrate more 

naturally.  

 

Beyond explicit references, our system facilitates thematic unity through inherited 

conceptual characteristics. During the world generation phase, we establish primary thematic 

aspects (such as genre, tone, setting) that will be utilized and plumped in downstream generation. 

For instance, if the world generation phase generates a "dark fantasy" world with thematic 

characteristics such "corruption" or "redemption," those thematic characteristics will carry 

through the generation process, subsequently influencing NPC personalities, quest narratives and 

encounter designs. This process of thematic inheritance creates a more coherent game experience 

than if we simply rely on individual elements referring to one another. This style of reasoning 

helps to solve some challenges associated with thematic mixture in game procedural narrative 

generation. By beginning our thematic core elements early in the generation, and then permitting 

those themes to radiate downstream through the generation pipeline, we achieve a greater level 

of coherence in the player experience. 

 

4.5 Error Recovery and Resilience Methodologies 
 

 Error handling in AI-assisted content generation requires alternative approaches that differ 

from traditional error management. Our methodology acknowledges the probabilistic nature of 

the LLM outputs and implements a multi-layered recovery strategy. 

 

Our implementation uses a progressive parameter adjustment approach for handling generation 

failures: 

1) The initial generation uses parameters (top_p and temperature) with values that favor 

creativity. 

2) If generation fails, these parameters are adjusted to reduce the creative variation (lower 

the top_p and temperature). 

3) With each failed attempt the system implements an exponential backoff to prevent 

resource  exhaustion. 

 

Temperature and top-p (nucleus sampling) are two critical parameters that control how Large 

Language Models generate text, working together to balance creativity with coherence. 

Temperature adjusts overall randomness—higher values (>0.8) encourage the model to consider 

less probable tokens, producing more diverse and creative outputs ideal for brainstorming or 

creative writing, while lower values (<0.5) favor the most probable tokens, generating more 

predictable, focused responses better suited for factual information or code. Meanwhile, top-p 

dynamically limits the token selection pool—a setting of 0.9 means the model only considers 

tokens within the top 90% of probability mass, excluding extremely unlikely options while 

maintaining reasonable variation. In applications like our RPG engine, these parameters are 

strategically adjusted for different content types (higher for world-building creativity, lower for 

structured quest design) and can be dynamically modified during retry attempts, starting with 

higher values for creative exploration before gradually shifting toward more conservative settings 

if initial generations fail. 
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This method strikes a good balance between creative exploration and reliability. It allows 

the system to first explore more creative generation and only fall back to more constrained 

generation when needed. Its progressive nature gains the benefit of preserving as much creative 

variation as possible while ultimately succeeding. 

 

A critical aspect of our methodology is the implementation of a graceful degradation 

hierarchy for cases where generation cannot succeed despite multiple attempts. Our approach first 

attempts generation with model parameters optimized for success, and if this fails, we then use 

saved fallback content associated with the specific content type. If there are no saved fallbacks, 

we then generate procedurally generated placeholders for the specific content type. If generation 

of the placeholder content fails, we lastly consider minimal compatible defaults. This design 

assumption provides assurance that even in the most extreme unicorn situations in which we 

cannot generate compatible content, the game is playable.  The combination of multiple fallback 

options ensures central functionality is maintained, and degrades gracefully when required. 

4.6 Integration Methodologies for Game Systems 

The final challenge we faced was connecting our rich narrative content with actual gameplay 

systems. Instead of imposing a technical template system for writers, we created a smart system 

to read natural language and highlight the key gameplay elements. When our system analyzes 

quests, it picks out action words like "talk" or "defeat" to create player objectives. This approach 

allows the system to work with natural language descriptions rather than requiring structured 

markup or templates. By identifying action verbs and their objects, the system can transform 

narrative descriptions into actionable gameplay objectives. 

The natural language interpretation approach represents a significant advancement over template-

based PCG systems, which typically require rigid formatting that constrains creative expression. 

Our keyword-based method preserves creative freedom while extracting the structured data 

necessary for gameplay mechanics. 

Our entire integration process uses a hybrid strategy that blends procedurally produced 

content with hand-designed game systems: 

1) Manual Design: Progress systems, spatial map structure, and essential game 

mechanics 

2) Procedural Generation: Characters, quests, world story, and encounter information 

3) Hybrid Components: NPC actions, battle balancing, and spatial-narrative mapping 

 

 This hybrid strategy acknowledges the complementary qualities of AI and human 

innovation.  While AI is excellent at producing a wide range of narrative content and character 

personalities, human designers are better at building stable, well-balanced systems and spatial 

landscapes. 

 

 Our technique outperforms both fully procedural generation and pure manual design by 

identifying this methodological border between manual and procedural parts.  The AI-generated 

content is given structure and purpose by the stable framework that the human-designed 

components offer. 
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This chapter presented a comprehensive framework for integrating LLMs into PCG. The 

key principles emerging from this work include structured creativity using targeted constraints to 

channel creative variation where it adds value while ensuring technical functionality; layered 

validation implementing multiple validation layers that address different aspects of content 

quality and correctness; context-aware generation creating interdependencies between generation 

stages to maintain narrative coherence and thematic consistency; resilient processing designing 

systems that can recover from generation failures through progressive adjustment and graceful 

degradation; natural interpretation bridging the gap between natural language and game 

mechanics through keyword-based interpretation; and a hybrid design philosophy combining the 

strengths of manual and procedural approaches rather than relying exclusively on either. These 

principles form a coherent methodological framework for AI-assisted game development that 

addresses the unique challenges of language model integration. The framework balances the 

creative potential of these models with the technical requirements of functional game systems. 

By detailing the reasoning and alternatives behind our chosen approaches, this chapter provides 

a foundation for future work in AI-assisted game development. The methodologies presented here 

can be adapted and extended for different game genres, content types, and technical contexts.  
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Chapter 5: Gameplay Implementation 
 

This chapter aims to examine the implementation of the gameplay systems and mechanics 

in RoQ,  focusing on how procedurally generated content is integrated with the gameplay 

mechanics. The chapter brings together the technical infrastructure described in Chapter 3 and 

the methodological approaches from Chapter 4, showing how theoretical concepts are translated 

into gameplay features and mechanics. The Figure 19 shows the flow of our game implementation 

that will be analyzed in this chapter. 

 

 
Figure 19: Complete Game flow Diagram 
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5.1 Menus 
 

The first screen the player sees when starting the game is the Title Screen as seen in Figure 20 

 

 
Figure 20: Title Screen 

The second screen is where the player is prompt to either generate a new world, or load 

the existing one as can be seen in Figure 21. This is like our Main Menu screen. 

 

 
Figure 21: World Selection or Generation screen 
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If the player chooses the Load Existing world, the player is shown a loading bar for a brief moment 

and then gets into the Game. If the player chooses the Generate New World option, he is shown a 

screen where he is prompted with sliders and text inputs for configuring world parameters (genre, 

setting type, tone, complexity, number of locations/NPCs/quests/encounters) as seen in Figure 22.  

 

 
Figure 22: World Generation Settings Screen 

Then while the world is being generated, the user can monitor the step progress from a 

loading bar as seen in Figure 23. 

 

 
Figure 23: Loading Screen where the world generation progress is displayed. 
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After the game is completed, the player is shown the end screen, where the player's level and stats 

are displayed as well as the quests that were completed as seen in Figure 24. 

 

 
Figure 24: End screen with game summarization 

 

5.2 Game Entities 
 

The game entities in RoQ follow a traditional RPG structure all while integrating 

procedural generated content. There is a player who can explore, interact and talk with NPCs, 

engage in combat and progress the character, all with enhancement by LLM-generated content. 

 

5.2.1 Player Characteristics 
 

The player controls are fundamental. He can move using the keys: W, A, S, D each moving 

him in a direction as seen in Figure 25. He can access the inventory by pressing the key I, see the 

quests and their progress at any time by pressing TAB and can interact with NPCs, locations, 

encounters and the Gem of Healing by pressing E. 
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Figure 25: Character Movement 

The player also has several attributes in lines with every RPG character. He has health, 

damage, defense, exp (experience) and a level. 

The progression system uses a formula-based approach for leveling, as described in 

Chapter 3.4. The player's health increases with every level, damage increases on even-numbered 

levels, and defense increases on odd-numbered levels. Additionally, every tenth level provides a 

significant boost to all attributes. 

This systematic approach ensures balanced progression throughout the game while still 

allowing for meaningful character development. The player's stats directly influence combat 

effectiveness, making progression feel impactful. 

5.2.2 NPC 
 

The NPCs do not have any stats, or movement mechanics as they are stationary. The 

spawn points of the NPCs are loaded at random, from a predefined list created using the Tiled 

map editor. The only functionality they have is the interaction with the player and the conversing 

with him. When the player interacts with an NPC a dialog window is shown where the player 

writes and sends the message to the LLM; when the response is ready it is printed in the dialog 

window as seen in Figure 26. 
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Figure 26: Player and NPC chat window 

If the NPC is involved with one or more quests, upon interaction it marks that quests step 

as completed. 

 

5.2.3 Enemies 
 

Just like with the NPCs, the enemies do not have any movement mechanics.  But they 

do have health, damage and defense statistics as can be seen in Figure 27. They do not have any 

sort of controls. Their attack and defend moves are handled by the Combat System as is 

explained in Chapter 5.5.1. 

 

 
Figure 27: Enemy stats 
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5.2.3 Gem of Healing 
 

Within the game world, the player  will discover the Gem of Healing. Upon interacting 

with it the player’s health is restored to full as can be seen in Figure 28. This healing mechanic 

provides a strategic resource for players between challenging encounters, especially valuable 

after difficult battles when healing potions might be scarce. 

 

 
Figure 28: Gem of Healing restoring the player's health 

 

5.3 Game World 
 

The game world view acts like a central hub for the player as seen in Figure 29. Inside 

this view are located all the NPCs with whom the player can interact and converse, there is the 

Quest Board where the player can view the quests for this world, there is the Gem of Healing 

which upon interaction heals the player to full HP and lastly there are the location-interactions 

which upon interaction transport the player to a new location. 
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Figure 29: Game Hub 

5.4 Locations 
 

As mentioned before, the location’s entry point is located in the hub, it is depicted as a 

star with the name of the location above. Upon interaction the player is transported to the wanted 

location. The current location’s layout is randomly selected each time from one of four predefined 

locations created with Tiled. Inside each location the player may find an encounter – if an 

encounter is created for this location- and interact with it to start the combat as can be seen in 

Figure 30. Upon first visiting each location a check is initiated to see if this location is listed in 

any quest step. If it is listed, then the current step is marked as completed. 

 

 
Figure 30: Location view with an encounter 
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5.5 Encounters 
 

Upon interacting with the encounter in the location, the player is transitioned to the 

combat screen as seen in Figure 31. There are spawned the enemies of that encounter one to four 

enemies depending on the complexity of the world and the difficulty of the encounter.  

 

 
Figure 31: Combat screen 

Combat continues until either all enemies are defeated or the player's health reaches zero.  

 

5.6 Game Systems 
 

The game consists of  four visible systems; the combat, inventory, leveling and quest 

systems. Each of them handles a specific aspect of the game, though some of the systems are 

interconnected. 

 

5.6.1 Combat System 

 
The combat system implements the turn-based encounter model mentioned before. It 

maintains the state machine for the combat, tracks the turn order and processes the combat 

actions. There are 3 possible states of combat, the player turn, the enemy turn and a waiting state 

that acts as a buffer between the other states. 

 

Combat begins with the player having the first turn, followed by enemy turns cycling 

through all active enemies.  The player can chooses between three actions: 

1) Attack: deal damage to the clicked enemy based on the player’s damage attribute 
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2) Defend: reduce incoming damage based on the defense formula: total_defense = 

base_defense + (base_defense * 0.6). 

3) Flee: escape the combat in case it is difficult for the current level. 

 

The enemies follow a very simple probability-based decision making process: 

1) 50% chance to attack the player. 

2) 50% chance to defend, reducing the incoming damage of the player by half in the next 

turn. 

 

Upon victory, players receive rewards including experience, gold, and potentially items 

and are returned to the game hub. 

 

The system successfully integrates LLM-generated enemy definitions by applying their 

attributes (health, damage) directly to the combat calculations, ensuring that narrative 

descriptions of enemy power translate to appropriate gameplay challenge. 

 

5.6.2 Leveling System 
 

The leveling system manages the character progression. It handles the exp calculation, the 

level determination and the stat increases. To calculate the experience, we implemented a custom 

non-linear progression curve using the base_exp * (level ^ exponent). Any exp remaining is 

carried through the next level. To upgrade the player stats we follow a systematic pattern where 

health increases every level, the damage on even levels and the defense on odd levels. Every ten 

levels we provide a significant stat boost to the player. 

 

 

 

Upon leveling up the game displays to the player a notification indicating the new level 

and stats as seen in Figure 32. 

 

 
Figure 32: Level up stats increase notification 
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In order for the game mechanics to work correctly, the leveling system is integrated with 

other systems that may result in a character level up. These systems are the combat system the 

quest system and the rewards system. 

 

5.6.3 Quest System 
 

The quest system represents one of the most sophisticated and complex components in 

the game, responsible for tracking narrative progression and interpreting LLM-generated quest 

content into actionable gameplay objectives. 

 

Players can access the quest management interface through two distinct methods. The first 

option involves locating and interacting with the Quest Board, a physical object in the game world 

that resembles a wooden notice board. When approaching this board, a prompt appears instructing 

players to press 'E' to interact with it. Alternatively, players can press the TAB key at any time 

during gameplay to instantly access their quest log, providing convenience regardless of their 

current location in the game world. 

 

In the quest view, players are immediately greeted by a list view of all available quests. 

Each quest list view contains key pieces of information at a glance, including the displayed title 

of the quest, a symbol to indicate its status (completed, etc.), and a short excerpt of the quest 

description. In addition, with each quest entry, there is a button labeled "View Details" next to 

the title, which allows players to take a closer look at the specific quests. At the top of the quest 

interface is a filtering system that allows players to organize their quests into three categories: All 

Quests (showing all the quests available to the player), Active Quests (showing quests that have 

started), and Completed Quests (showing quests that have been completed) as can be seen in 

Figure 33. 

 

 
Figure 33: Quest screen containing all quests. 

Once players have chosen a quest from the quest list, the view will transition to the more 

detailed quest view, giving detailed information about the selected quest. The detailed quest view 
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prominently displays the full quest description. Below the quest description, players will see a 

detailed outline of the specific objectives that need to be completed in order to finish the quest, 

where each step is clearly identified as either completed or not. 

 

In addition to the quest description and outlined objectives, the detailed quest view 

provides important information about quest locations and characters that include a section titled, 

"Locations," that identifies specific areas in the game world that need to be visited in order to 

progress in the quest. There is another specific area entitled, "Involved NPCs," where players can 

see a list of pertinent characters that only need to file in a game world. This information allows 

players to better plan out their travels to complete the quest objectives by knowing where they 

can go, and who they will need to speak to. 

 

Quest rewards are displayed on the expanded view. While completing quests, players 

typically earn experience points toward their level, in-game currency (gold) and often items that 

may include special weapons or armor. Each reward item will have its own attributes listed. If 

players find that they are unable to complete a quest or quest step, the game provides a fallback 

option indicated as "Complete Step (If Stuck)". This is accompanied by a warning that indicates 

rewards will not be provided if quests are completed manually. This option ensures players do 

not become "permanently" locked out of a quest due to unintended consequences with procedural 

generation options. 

 

 
Figure 34: Quest detailed view 

 

As the player progresses through the game, the quest system continuously checks if any 

step is completed. Completed steps are automatically marked when the corresponding actions are 

performed, whether that involves conversing with an NPC, visiting a location, or defeating 

enemies in combat. The system interprets player actions contextually, matching them against 

quest objectives through keyword recognition and entity matching. This can be seen in Figure 35 

where the first step is completed. 
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Figure 35: Quest progress update 

Upon completing all the available quests, the end of the game is triggered, showing the 

end screen. 

 

5.6.4 Inventory System 
 

The inventory view in RoQ as seen in Figure 36 consists of a 24-slot grid interface that 

allows the player to manage the items they have acquired in the game. The inventory is accessible 

by pressing the "I" key, which temporarily pauses the game and presents a view of the player’s 

entire inventory of weapons, armor, potions, and miscellaneous loot. Each item appears as an 

icon with color-coded backgrounds—red-orange for weapons, blue-violet for armor, green for 

potions, and a neutral gray for general loot—providing instant visual categorization. Hovering 

over an item will display a tooltip with comprehensive information about the item, including a 

title, type, statistics, and descriptive text produced by the LLM.  

 

The interface employs an intuitive right-click interaction system that provides contextual 

options based on the item type. For weapons and armor, players can equip them to their respective 

slots (main hand or chest), immediately applying their statistical bonuses to the character's 

attributes. When equipped, items display a small "E" indicator in their slot and appear in the 

equipment panel on the right side of the screen. For consumable items like potions, the "Use" 

option immediately applies their effects—typically healing the player's health by the potion's 

specified protection value. The right panel of the inventory screen serves as an information hub, 

displaying the player's current statistics including health, damage output, and defensive 

capabilities. Below these stats, the currently equipped items section lists all active gear.  
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Figure 36: Inventory view showing items, tooltips, character stats & equipped items 
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Chapter 6: Evaluation and Results 
 

The integration of the LLM into our game presented unique challenges that required 

extensive evaluation across multiple aspects. This chapter examines the performance and 

reliability of the RoQ system through technical analysis and qualitative assessment. We evaluated 

the system’s computational performance and the technical robustness of our implementation. By 

analyzing response times, success rates and error patterns we gained insight into possible points 

of failure and  how the current implementation might scale and evolve in  practical game 

development contexts. 

 

All the tests are performed in a system with the following specifications: 

 

Part Spec 
CPU Intel i7-6700 

GPU NVIDIA RTX 3070 (8GB) 

RAM 32GB 

  

 

The main focus of our evaluations is system performance and robustness. To find out if 

this system can be applied to real world applications we needed to test all endpoints to determine 

if the time of the requests is in accordance with user experience best practices [12]. In order to do 

so, we implemented an automated testing framework.  

 

To test and run the LLM locally, we used the Ollama [13] framework. Ollama is a 

framework that allows users to run open-source LLMs locally on their machines. Among the 

plethora of available LLMs we tested Gemma2 [14], WizzardLM [15] and Gwen2 [16]. From our 

testing we saw that Gemma2 was slower and more inconsistent than the other models. 

WizzardLM was faster than Gemma2 but the responses were inconsistent as well. We settled on 

Gwen2 which was the faster and more consistent between these three. 

 

This framework tests all the endpoints used in the generation of the complete world, one 

at a time for a total of 100 tests per endpoint. The data used for each test iteration were: 

 

Field Data 
Genre adventure 

Locations 4 

Setting type medieval 

Tone classic fantasy 

Complexity moderate 

NPCs 4 

Quests 3 

Encounters 4 

Prompt Hello, what can you tell me about this place? 

 

 It logs metrics per endpoint, as well as some overall metrics. Some of these metrics are 

the success rate of our requests, the average, minimum and maximum duration of each request. 

The output of these metrics is stored in files, one for the errors that occurred, one timing all the 
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requests and  one with various metrics per request. Then after the evaluation is complete, we 

process the data we gathered to visualize our findings. 

6.1 Response Time Analysis 
 

Response time  is a critical metric for understanding  the real world viability of LLM 

integration in game development flows. The following figures show the distribution of response 

times across our endpoints: world generation, NPC generation, quest generation, encounter 

generation and NPC conversation. 

 

 
Figure 37: Generation process response time distribution. 
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As seen from the visualization, response times varied significantly across different content 

types. World structure generation maintained the most consistent performance profile regarding 

the generation requests with median response times of 10.56 seconds and relatively narrow 

interquartile ranges, suggesting predictable performance for basic world creation. In contrast, 

encounter generation showed the widest variance with a median of 20.93 seconds but extremes 

reaching higher than 95.67 seconds in some cases, indicating greater computational complexity 

and potentially more challenging validation processes (or issues) for this content type. 

 

 Quest generation demonstrates an interesting middle ground, with generally consistent 

performance (median 14.04 seconds) but occasional outliers, particularly visible in the 95th 

percentile measurements (32.52 seconds). This pattern aligns with our implementation approach, 

where quests require complex narrative structure while maintaining connections to both world 

elements and NPC characteristics. 

 

 
Figure 38: Conversation response time distribution. 

 

As can be seen in Figure 38 the most consistent performance of all the requests is the 

conversation’s endpoint. With a median response time of 1.35 seconds and a maximum of a little 

higher than 3 seconds. 
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6.2 Performance stability 
 

 For real world applications the stability and predictability are equally important as speed. 

To evaluate this aspect we analyzed response time patterns across 100  generation iterations. 

 

 
Figure 39: Response Time heatmap visualization. 

 

The heatmap visualization as seen in Figure 39 reveals some interesting patterns across 

the iterations. Most notably we see that the performance remains relatively stable for all requests 

across iterations except the encounters generation. This suggests that the generation was failing 

and our validation mechanism was operating successfully. 
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Figure 40: Conversation response time heatmap. 

Looking at the heatmap for the conversation endpoint in Figure 40, we can see a fluctuation 

in the duration. However, due to the low response times, this is well within acceptable range. 

These variations likely stem from the dynamic context management system that adapts to 

conversation length and complexity while maintaining responsive interactions. 

The complete pipeline performance analysis in Figure 41 shows that full world generation 

(including all four content types) required an average of 50.63 seconds across 100 iterations. 



 

58  

While this duration exceeds what would be acceptable for real-time gameplay generation, it falls 

within reasonable parameters for game initialization or level loading processes. 

 

 
Figure 41: Performance per endpoint 
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Similarly for the conversation endpoint across 100 iterations as seen in Figure 42 we get 

an average of 1.4 seconds. This time is completely acceptable for a real time communication 

between the player and the NPC. 

 

 
Figure 42: Conversation performance. 

6.3 Success Rates 
 

Besides performance, system reliability is essential for practical applications. The 

cumulative success rate analysis shows the overall success of our system. Of our four endpoints  

for world generation only one does not have 100% success rate as can be seen in Figure 43. The 

encounter generation which falls down to 85% success rate. The encounter generation failures 

primarily stemmed from validation issues where the generated content could not be reconciled 

with the structural requirements of the game system. 

 

 The two errors that we observed were a validation error ( "Validation error at encounters 

-> 2 -> rewards -> loot -> 0: 'value' is a required property") and a parsing error that occurred due 

to bad generation (Failed to generate encounter structure after 5 attempts. Last error: Failed to 

parse LLM response as JSON: Expecting ',' delimiter: line 12 column 62 (char 373)" ). 
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Figure 43: Success rate per world generation endpoint. 

 

For the conversation endpoint we have a 100% success rate across all tests. 

 
Figure 44: Success rates for conversation endpoint. 

6.4 Conclusion 
 

 The RoQ system effectively balances the computational demands of LLM-driven content 

generation with the practical requirements of game development workflows. Despite the 

complexity of generating interconnected narrative elements, the system maintains acceptable 

response times and high reliability rates. The architectural choices, particularly client-server 

separation and sequential content generation approach, validate the system's performance. While 

further optimizations are required for a production application, the current performances fits well 

with the scope of this research.  



 

61  

Chapter 7: Future Directions and Conclusions 
 

The conceptualization and assessment of the RoQ system presents several significant 

implications for videogame development and AI integration whilst also highlighting several new 

ways for future research and development. 

7.1 Implications 
 

The successful deployment of LLM-driven content generation in RoQ has a number of 

relevant implications for organizing game development practices. By automating the generation 

of narrative elements, character backgrounds, and designs of encounters, our system alleviates 

one of the fundamental bottlenecks in game development - content generation. This allows 

smaller development teams, in particular, to create games with scope and depth that would 

normally require significantly more resources.  

 

Our hybrid methodology illustrates that procedural generation and manual design can 

actually complement each other rather than represent competing methodologies.  The success of 

RoQ indicates that it is important to identify the elements of a game that would benefit most from 

procedural methods as opposed to manual design, as this makes development much more 

efficient.   

 

The performance metrics of NPC conversations, relating to the average of 1.4 seconds 

with reliable output, suggests that generating certain types of content during runtime is possible 

within acceptable user experience levels. This creates opportunities for games that can adapt to 

player action in an organic manner rather than solely depending on pre-authored instances, and 

may heighten replayability and personalization. 

 

By separating content creation from gameplay mechanics with a dedicated service, we 

find an effective architectural pattern for embedding resource-intensive AI operations in games. 

This approach maintains gameplay performance without sacrificing generative sophistication, 

suggesting a similar design might be extended to other AI-enhanced game features. 

 

 Our implementation demonstrates the necessity of robust validation systems where 

probabilistic systems such as LLMs interact with deterministic game mechanics. The success 

rates we saw (100% for most endpoints and 85% in encounters) demonstrate that well thought 

out validation and correction systems can bridge the gap between generative AI and gaming 

requirements. 

 

7.2 Future Research Directions and possible applications 
 

Future systems could use game player feedback and behavior analysis to modify 

generated content over time. As LLMs learn about player preferences and styles of play they 

could increasingly create more personalized experiences that change over the course of play 

rather than remain static after an initial generation. 
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While RoQ has been centered around a text-based generator there is an interesting line of 

future research around the ability to integrate multi-modal AI systems that generate visual assets, 

music and sound effects alongside the narrative content. These AI systems could alleviate 

additional development bottlenecks and lead to an even more consistent procedurally generated 

world. 

 

Although our context management method is effective in maintaining narrative continuity 

across iterations, a more systematic memory model could accommodate long-term narrative arcs, 

character growth, or changes to the state of the world. Using retrieval-augmented generation 

techniques could be adjusted to provide LLMs more selective access to pertinent historical 

context.  

 

Currently, our implementation also requires a significant computational investment. 

Future work in model shrinking, edge deployment, and server-side optimization will improve the 

possibilities for these techniques in game platforms with more significant resource constraints, 

such as mobile or web-based games. 

 

Although RoQ illustrates the approach primarily in the context of the RPG genre, the 

techniques developed could easily extend to other genres of games: 

• Adventure games could use dynamic dialogue (like our 

RPG) and adaptive puzzle generation. 

• Strategy games could use similar techniques to develop and 

manage factions, diplomacy systems and mission 

generation. 

• Simulation games could use LLM assisted PCG to create 

more diverse and realistic NPC behaviors  and stories. 

Educational games could use the system create personalized learning scenarios that adapt to 

student knowledge and interests. 

 

7.3 Conclusions 
 

The thesis developed and implemented a framework that solved the main challenge of 

probabilistic AI outputs being integrated into deterministic game systems. The use of a separately 

established backend service that handles LLMs interactions away from the game client response 

which avoids many of the performance challenges in AI integrated games. The system 

consistently generates coherent, interconnected game content across multiple domains (world 

structure, NPCs, quests, and encounters) while maintaining acceptable performance metrics for 

practical application. 

 

The method of validating and correcting LLM outputs developed through the thesis 

represents a step forward in AI-assisted content creation. Through multiple layers of validations 

and intelligent recovery from errors, our system had an impressive success rate (100% for most 

endpoints and 85% for the more complex generation tasks). We believe it is reasonable to 

conclude LLMs can be a reliable provider of game content when properly bounded and followed 

within a structured framework for validation. The implementation of context management for 

NPC conversations addresses one of the most challenging aspects of narrative AI: keeping 

coherence and character consistency across several interactions. Our approach, based on 
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summarization, can give the appearance of memory and continuity despite the technical 

limitations of current language models. With conversation response times averaging 1.4 seconds, 

the system delivers a responsive player experience that feels natural and engaging. 

 

Our results have several noteworthy implications for game development practices. To 

begin, the client-server architecture pattern outlined in this initiative provides a model for 

incorporating heavy AI processes into games while avoiding negative impacts on gameplay 

performance. This model can be extended beyond content generation, to different features 

enhanced by AI in games. Secondly, the hybrid procedure employing procedural and manual 

design elements further illustrates that these methods are complementary instead of alternatives. 

By determining which elements of a game benefit most from each method, developers can work 

more efficiently and more easily sustain creative production despite limited resources. Last, the 

success of runtime NPC conversations suggests that certain types of content can be generated 

during gameplay rather than exclusively during development or loading phases. This creates 

opportunities for more responsive and adaptive game experiences that evolve based on player 

actions. 

 

The RoQ project demonstrates that LLMs can contribute to game development when 

integrated through carefully designed systems that bridge the gap between AI capabilities and 

game requirements. By separating content creation from gameplay mechanics and establishing 

strong validation processes, we've proven that even current language models can reliably generate 

coherent and interconnected game content. This hybrid strategy, which combines AI-generated 

narrative elements with traditional game systems, represents an exciting direction for the future 

of game development. Rather than replacing human creativity, these technologies enhance it, 

allowing developers to build richer and more diverse game worlds while honing in on the core 

systems and experiences that shape their games. As language models continue to evolve in 

capability and efficiency, the approaches we've laid out in this research provide a framework that 

can adapt alongside them, unlocking new opportunities for dynamic, responsive, and personalized 

gaming experiences.  
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Δήλωση Πνευματικών Δικαιωμάτων 

Δηλώνω ρητά ότι, σύμφωνα με το άρθρο 8 του Ν. 1599/1986 και τα άρθρα 2,4,6 παρ. 3 του 

Ν. 1256/1982, η παρούσα Μεταπτυχιακή Διπλωματική Εργασία με τίτλο:  

  «Leveraging Large Language Models for Dynamic NPC Interactions in 2D RPGs» 

καθώς και τα ηλεκτρονικά αρχεία και πηγαίοι κώδικες που αναπτύχθηκαν ή 

τροποποιήθηκαν στα πλαίσια αυτής της εργασίας και αναφέρονται ρητώς μέσα στο 

κείμενο που συνοδεύουν, και η οποία έχει εκπονηθεί στο Πρόγραμμα 

Μεταπτυχιακών Σπουδών «Ανάπτυξη Ψηφιακών Παιχνιδιών και Πολυμεσικών 

Εφαρμογών» του Τμήματος Επικοινωνίας & Ψηφιακών του Πανεπιστημίου Δυτικής 

Μακεδονίας, υπό την επίβλεψη του Δρ. Μηνά Δασυγένη αποτελεί αποκλειστικά 

προϊόν προσωπικής εργασίας και δεν προσβάλλει κάθε μορφής πνευματικά 

δικαιώματα τρίτων και δεν είναι προϊόν μερικής ή ολικής αντιγραφής, οι πηγές δε 

που χρησιμοποιήθηκαν περιορίζονται στις βιβλιογραφικές αναφορές και μόνον. Τα 

σημεία όπου έχω χρησιμοποιήσει ιδέες, κείμενο, αρχεία ή / και πηγές άλλων 

συγγραφέων, αναφέρονται ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή 

και η σχετική αναφορά περιλαμβάνεται στο τμήμα των βιβλιογραφικών αναφορών 

με πλήρη περιγραφή. Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της 

παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. 

Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, 

εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή 

προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση 

της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. 

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν 

τον συγγραφέα και μόνο. 
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