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Ewsayoyn

H mapovoa petomtuylokn dtotpiPr mtapovstdlet pio vEéo TPOGEYYIoT GTNY TPOOSEVTIKN
onuovpyio mepleyopévovr o moryviown poéiwv (RPG) péoow v evoopdtmong peyGAwmv
YAooowkov poviédowv (LLM). H gpyacio mpoomabel va aviyuetoniost o tpékAnon otnv
avamtuén moyvidlov: v onuovpyio €veg TAOVGIOL, 1COPPOTNUEVOL Kol Ol0dPOGTIKOD
TEPLEXOUEVOD TO OTTO10 SlaTnpPel TV TPOGOYN Kol TNV OEGUEVCT] TOV TAUKTAOV, EVD TOLTOYPOV
AmAOTOLEL TNV O1001KAGT10L KOl TOVG YPOVOVG OVATTTUENC TOV TEPIEXOUEVOU.

H apyrtektovikn tov cvotipotog amoteAdeitan and dvo (2) kopla otoryeios:

1) 'Evav server o omoiog empeheiton v arAnienidpdoewy tov LLM yuo v dnuovpyia
duvapkol TePLEYorEVOL TOL amoTeAel dopkd ABo Tov TayVidoV. AVTEG 01 OOUEG Etvat O
KOGHOG TOL ToyVIdlov, Ol YopaKTAPeS mov Tovg yewpiletar 1o mayviot (NPC), ot
QmOGTOAES TOV ToiKTn KaODC Kot ot péyes mov mpenet va avtipetonicel. O televtaiog
UNYOVIGUOG TOL Server stvat évag unyavicpog EmKOP®ONG Kot EAEYYOV COOAUATOV GTIG
anovoels tov LLM.

2) To mouyvidt, péo® tov omoiov o maiktng pumopei va Exel aliniemdpaocetg pe to. NPC, va
eEepevvnoel 11 tomofecieg Tov KOGHOL, VO, TOAEUNOCEL TIC Mdyes, va e&eMel tov
YOPOKTNPO TOV, KAODG KOl VAL OLOKANPDOGEL SLAPOPES ATOCTOAES.

H epoappoyn ovt) amodeikvier 0Tt 10 GOOTNUO TAPAYEL EMTVYDS GULVEKTIKOVG
QOVTOOTIKOVG KOGHOUG UE apNyNUOTIKA oTowyeio Kot Agttovpywkd cvotiuoto. [Hoapatnpeiton
eniong OTL T0 TaPAYOUEVO TTEPLEXOUEVO TPOGPEPEL GNUAVTIKT] SLOPOPOTOINGT G€ KABE maryvidt
TOL TPUYLOTOTOLEITAL.

H viomoinon avtr cupPaiiel otov Topéa TG avATTLENG TALVIOUDY HE TNV KoO1Epmon
€vOG LeBOOOAOYIKOV TAOLGIOV Y10l TNV APy TEPLEXOUEVOD LLE YPNON TEXVNTIG VOTLOGVVIG
(Al) e&loopportdvtag TNV SNUIOVPYIKN TOPOAAAYT LE TOVG SOUIKODES 0vTovG Teplopiopove. Ta
EVPNUATO AVTE VTOJEIKVOOVYV TOAAEC LIOGYOUEVES KATELOVVOELS Yol TNV KMUAK®OGN TNg
OLOIKOOTIKNG TAPAYMYNG TEPLEYOUEVOD OTNV AVATTLEY EUTOPIKMOV TOUYVIOIOV HECH TNG
EPAPLOYNG LEYAA®OV YAWGGIKOV povtéAwV (LLM) og eEetdicevpéva apyltektovikd TAaicia.

AgEeig khewona: server, LLM, NPC, RPG, Al, dvvapukd dnpiovpyoduevo mepleyOUevo



Abstract

This thesis presents a new approach to progressive content creation in role-playing games
(RPG) through the integration of large language models (LLMSs). The thesis seeks to address a
challenge in game development: creating rich, balanced and interactive content that maintains
player attention and engagement while simplifying the process and timescales of content
development.

The architecture of the software stack consists of two (2) main elements:

1) A server that curates the LLM interactions to create dynamic content that is the building
block of the game. These structures are the game world, the characters handled by the
game (NPCs), the player's missions, and the battles the player must face. The last server
mechanism is a validation and error checking mechanism for LLM responses.

2) The game, through which the player can have interactions with NPCs, explore world
locations, fight battles, evolve his character, and complete various missions.

This implementation demonstrates that the system successfully produces coherent fantasy
worlds with narrative elements and functional systems. It is also observed that the generated
content offers significant differentiation in each game played.

This implementation contributes to the field of game development by establishing a
methodological framework for content generation using artificial intelligence (Al) by balancing
creative variation with these structural constraints. These findings suggest promising directions
for scaling procedural content generation in commercial game development through the
application of large language models (LLMSs) to specialized architectural frameworks.

Keywords: server, LLM, NPC, RPG, Al, dynamic content generation
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Chapter 1

Introduction

Role-playing Games (RPGs) have long captured the hearts of gamers, with their worlds,
narratives, character interactions, and gameplay. From the origins of tabletop role-playing games
(TTRPGs) to digital games, these games offer players unique opportunities to explore detailed
environments and make choices, resulting in multiple outcomes for every player. At the heart of
this experience, alongside the gameplay, lies the content: the narrative threads, the character
personalities, the missions, and the environment that bring these paper/virtual worlds to life.

Traditionally, the content creation of games has been an intensely manual process. Game
designers, writers, and artists create each element individually, from landscapes and cities to the
personalities of every NPC. This manual approach produces highly curated experiences but faces
limitations in terms of scale, variability, and resource requirements. A simple parallel quest can
require days of writing, planning, and implementation, while larger story arcs can absorb months
of development time. More often than not, the result is a compromise: rich but limited content
that players will quickly exhaust, or larger worlds with less depth and more repetitive elements
that can diminish player immersion and satisfaction over time.

Procedural content generation (PCG) emerges as a partial solution to this challenge, using
algorithmic approaches to create game elements such as terrain, dungeons, and object features.
PCG has a vast field of applications, from simple things like procedurally generated textures all
the way to procedurally generated stories.

Recent developments in Al, especially in LLMs, allow for a new field for creating
procedural content in video games. These LLMs demonstrate—most of the time—almost
excellent abilities in understanding context, creating narratives, all while maintaining thematic
consistency. However, integrating these technologies into practical game development contexts
presents significant challenges. Language models operate with probabilistic outputs that lack the
deterministic structure required by game systems. They can produce inconsistent, unbalanced, or
mechanically incompatible content without appropriate constraints. In addition, the
computational requirements of these models raise questions about performance in real-time game
environments, and their contextual limitations may affect long-term narrative coherence.

Realms of Quandria (RoQ) attempts to represent an innovative approach to address these
challenges through a specialized "client"-server architecture that enables us to separate the game
mechanics and implementation from the content creation. This separation allows each component
to utilize technologies for its specific requirements while maintaining a relatively easy
integration. Rather than attempting to integrate LLMs directly into the game’s engine—which
would add a significant overhead to the performance of the game—this project creates a dedicated
service for the creation of the content with a specialized game "client™.

As mentioned, the architecture consists of two main components:
e A backend webservice, orchestrating the LLM interactions to create the
world and its elements.
e A “client” that renders these elements into a complete game environment.

The backend uses validation systems, iteration mechanisms, and context management techniques
to ensure that the creative capabilities of the LLM conform to the requirements of the game
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systems. Meanwhile, the client implements traditional RPG mechanics: exploration, combat,
character evolution, and narrative interactions while maintaining communication with the service
that produces the content. This design overcomes several key limitations of previous approaches:

1. By moving the process-intensive LLM functions to a dedicated service, the game
maintains satisfactory performance during gameplay.

2. The use of validation and correction mechanisms ensures that the generated content
adheres to game-compatible data.

3. The asynchronous nature of the client-server communication allows for an almost
seamless integration of dynamically generated content without disrupting the player
experience.

4. The service is client agnostic, meaning that with small modifications this service can work
with every game engine. It is not tied to the specific implementation.

This project attempts to be a contribution to the field of game development and the integration
of Al. First, it establishes a framework for Al-assisted content generation that balances creativity
and structural constraints required for a complete gaming experience. This implementation
addresses a tension in PCG between flexibility and consistency, making available a model for
future applications of LLM in game development. Second, it introduces techniques for correcting
and validating the outputs of LLM in the field of game development. This ensures that the output
of the model is usable in the game engine. Third, it demonstrates strategies for managing the
context of the conversation between the player and the LLM whilst maintaining an illusion of
memory and character personality for the NPCs. Finally, it provides a comprehensive case study
that illustrates both the potential and practical considerations of using LLMs in game
development. This case study aims to provide valuable insights for developers seeking to use
similar technologies in their own projects.

Through the exploration of Al-driven PCG, Realms of Quandria offers not just a technological
demonstration, but a preview of how these technologies might affect game development, creating
more varied and responsive virtual worlds while reducing the resource constraints that
traditionally limit the scope and detail of RPGs.
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Chapter 2: Literature Review

2.1 The evolution of PCG in games

The PCG field has evolved significantly over the past decades, from the early use of
generating simple game elements to sophisticated systems capable of creating complex and
interactive narratives and worlds.

2.1.1 Historical Development of PCG

The history of Procedural Content Generation in game development goes back to the early
1980s when developers were looking for creative ways to overcome hardware limitations. Early
games like Rogue (1980) and Elite (1984) showed how algorithms could generate vast dungeons
and universes despite severe memory constraints. These early implementations served two
purposes: to get around the technical limitations and to add game variety through randomized
elements so no two playthroughs would be the same.

The technical necessity that drove initial PCG adoption turned into a design philosophy.
Games like Pac-Man used level variation to add replay value to something that has simple
mechanics. After a period of limited use in mainstream development, PCG had a renaissance with
empire building games like Civilization which introduced procedurally generated worlds as a
fundamental part of the game rather than just a technical workaround.

This history shows three enduring reasons for PCG implementation: technical constraint
mitigation, gameplay diversification and development efficiency. While modern hardware has
eliminated the first reason, the latter two still drive PCG adoption in modern game development
— including our own approach.

2.1.2 Methods and Approaches in PCG

The procedural content generation (PCG) landscape has changed significantly since its
inception, moving from simple algorithmic approaches to complex generative systems. Early PCG
implementations relied on constructive methods—predetermined rules combined with
randomness to produce variations on designer-specified patterns. While good for simple tasks like
terrain generation, these were limited in output quality and struggled with complex content.

As the field became more familiar, developers introduced more advanced techniques to
address these limitations. Search-based PCG methods came along, using evolutionary algorithms
and other optimization techniques to explore the possibility space while targeting specific design
goals. Constraint-based systems then enforced structural rules to ensure playability and balance.
Both were big advances in generating complex, functional game content while still having
designer control.

The latest methodological evolution has been the integration of machine learning into the
PCG pipeline. This is more than a technical advancement—it's a fundamental shift in how
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generative systems relate to designer intent. Traditional approaches explicitly encode design
knowledge through rules and templates, basically translating human creativity into algorithmic
procedures. Machine learning methods extract design patterns implicitly from existing content,
learning to recognize and reproduce stylistic elements without requiring explicit formalization.

This shift from explicit to implicit design knowledge has big implications for the scope
and flexibility of PCG systems. Rule-based approaches are great at generating content that follows
well-understood design principles but struggle with adaptation. Machine learning methods can
produce more unexpected creative output but traditionally require a lot of domain specific training
data—a big limitation for game specific applications where suitable datasets might be scarce.

Our language model approach is a natural extension of this methodological trajectory,
using the broad training of large language models to overcome the data limitation that has held
back previous machine learning approaches. Rather than requiring extensive game specific
datasets, these models transfer knowledge from their general text training to generate coherent
game content with minimal domain adaptation. This allows for the production of complex
narrative elements, character backgrounds and quest structures that are both coherent and
creative—exactly the content categories that have been most resistant to traditional PCG methods.

The progression towards more advanced generative techniques is a long standing goal in
PCG research: balancing generative freedom with structural control. We continue this tradition,
using the creativity of language models and validation frameworks to ensure outputs meet the
system requirements.

2.2 Capabilities of LLMs

LLMs demonstrate remarkable abilities at text generation; that comes with significant
limitations that must be addressed in order to effectively produce game content.

2.2.1 Recent advances in LLM Architecture

The development of transformer-based architectures has changed natural language
processing (NLP) beyond recognition, creating models with profound scale and capability.
Vaswani, who introduced the transformer architecture, describe its core innovation:

"The Transformer architecture relies entirely on attention mechanisms to draw global
dependencies between input and output, replacing the recurrent layers most commonly used in
encoder-decoder architectures with multi-headed self-attention."[1]

This change in architecture indicates the capabilities of modern LLMs, including those
implemented in our system, by using more processing-effective long-range dependencies in text—
something that is crucial for maintaining narrative coherence. The development of these models
has produced capabilities that were not seen in their smaller predecessors. This phenomenon is
documented by Brown in their work on GPT-3:

"We find that scaling up language models greatly improves task-agnostic, few-shot
performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning
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approaches. Specifically, we find that increasing model size improves performance in a log-linear
fashion across tasks, with the biggest improvements occurring in the ability to perform tasks that
require multi-step reasoning or in-context learning."[2]

These scaling qualities are very important for creating gaming content, as such jobs demand
complicated reasoning across interconnected aspects like characters, locations, and events.

2.2.2 LLMs for Creative Text Generation

LLMs have shown they can generate some pretty cool text, which is useful for game
development. They're great at writing basic stories, dialogues and descriptive text that can enhance
the gaming experience. However, since their output is based on probabilities, the quality can vary
and there can be coherence issues especially when generating longer text without clear guidance
or constraints.

Our research on the Realms of Quandria system confirmed this. We found that the raw
output from language models need well-structured prompts and post-processing to get consistent
quality of game content. The creative potential of these models is also evident in interactive
narrative scenarios. They keep character consistency and narrative coherence across multiple
interactions, so they're great for dynamic NPC behaviors and dialogue systems. This opens up
some possibilities for more responsive and lifelike game characters.

However, despite these benefits, language models struggle with long term narrative
planning and causal reasoning. They can generate text that seems coherent in the short term but
can contradict established facts or not maintain overall narrative coherence through an entire
gameplay session. These findings have directly influenced our design for context management
and validation so we can use the benefits while addressing the challenges.

2.2.3 Structural Limitations and Challenges

Despite all the incredible capabilities, language models have significant limitations that
need to be addressed when integrating them into game systems. Neural text generation has
problems of repetition, contradiction and hallucination — and those problems get worse the longer
the text is generated. Those aren't flaws in specific model architectures but in how the models are
trained and how they generate text.

Those observations directly informed our system design decisions, particularly our
implementation of validation layers to detect and correct inconsistencies in model generated
content before it hits the player.

Another big challenge for game applications is the context window of current language
models. Those models can only "remember” a finite amount of previous text, which limits their
ability to be coherent across long interactions or narratives. When conversations or storylines go
beyond that window the models lose access to earlier information and you get contradictions or
narrative breaks.
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That's what guided our development of the ContextManager component, which
implements conversation summarization techniques to keep NPC interactions coherent despite
those architectural limitations. By compressing and prioritizing contextual information our system
can support much longer and more complex player-NPC interactions than would be possible with
the raw limitations of the underlying models.

2.3 Al Integration in game development workflows

Al-generated storytelling has come a long way in game development research.
Computational storytelling systems tend to focus on three main areas: plot, space and character.
One of the remaining challenges is to combine these elements into wholes that balance storytelling
requirements with gameplay constraints [3].

This challenge directly affects our architecture. Our system has separate generation
services for the world structure, NPCs, quests and encounters and ensures consistency through
carefully designed interdependencies and validation processes. By separating these concerns
while keeping them related we can manage the complexity of creating coherent game worlds.

There is a fundamental tension between narrative coherence and player agency in
interactive storytelling. Different approaches prioritize these things differently — some systems
are very author-driven and limit player choices to maintain narrative structure, others go for
emergent gameplay at the expense of structured narrative arcs.

We have this same tension in our system. We need to balance the creative variation
language models provide with the structural requirements for gameplay. Our solution is to
implement JSON schema validation and correction pipelines that ensure generated content stays
within playable boundaries while still allowing for creative diversity and surprise. By
acknowledging and designing for these inherent tensions our system tries to get the benefits of
Al-generated storytelling while mitigating the risks that could harm the gameplay.

Despite all the great demos in research, commercial games have several barriers to entry
including technical integration, quality assurance and design team resistance. To succeed you need
systems that complement and do not replace designer expertise — tools that expand the possibilities
not automate the existing workflow. This is how we approach development, we see language
models as augmentative tools within a structured framework not autonomous replacements for
human design decisions [4].

Our system keeps the designer's creative judgment and uses Al to boost productivity and
explore the creative space that would otherwise be missed. The computational requirements of
language models present additional challenges for game applications. Different models have very
different inference latency and resource requirements, model size is a big but not the only factor
that affects performance. Response times for text generation can be under a second to nearly 5
seconds across different models, that's a big obstacle for real-time gameplay integration. These
performance constraints shaped our client-server architecture.

By isolating the resource heavy language model operations in a dedicated service and
keeping the gameplay responsive to the client we can leverage the Al capabilities without
compromising the player experience. This separation allows us to use the powerful Al without
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sacrificing the gameplay responsiveness, it's a more sustainable way to integrate Al in interactive
entertainment.

2.4 Validation and Quality Assurance for generated content

To ensure the quality of the output of the LLM and to validate said output is one of the
most critical challenges. Evaluating content generated by PCG methods has different challenges
compared to other Al applications. In many Al fields, success can be measured through clear
metrics like accuracy or performance benchmarks. However, when it comes to game content
evaluation, we must also consider the subjective elements of player experience alongside
functional requirements.

This evaluation challenge affects our validation strategy. Our system employs both
structural checks to ensure functional requirements are satisfied and semantic validation processes
to evaluate narrative coherence and player experience factors. This dual approach enables us to
confirm that the content not only integrates well within the game's systems but also achieves the
desired emotional and narrative effects.

Effective PCG systems should demonstrate reliability by consistently producing playable
content without significant flaws. They must allow for controllability, enabling designers to
influence the generated artifacts rather than relying solely on random outcomes. Also, they should
show expressivity by creating diverse content that explores the intended design space while
adhering to appropriate limits.

These criteria offer a useful optic for evaluating our own system's effectiveness; they
underscore the critical balance we need to strike between the creative expressivity provided by
language models and the reliability demands of functional game systems. By explicitly addressing
these criteria in our design and evaluation processes, we can enhance our approach to Al-assisted
content generation for games..

2.5 Conclusion and research gap

This short review highlights the advances in both PCG and the capabilities of LLM, while
also revealing some gaps regarding their integration to games. While the language models show
great potential for creating coherent and diverse text, their direct and immediate application to
games provides some struggles in terms of structure, performance as well as the consistency of
the responses. Previous work done by others has already explored many aspects of Al-assisted
game development; while comprehensive designs for integrating LLMs into game systems are
still being explored and developed.

This research aims to address this lack of exploration by developing and evaluating a
"client"-server architecture that leverages language models for content creation, while maintaining
the required characteristics for a functional game. By applying systematic validation mechanisms
and context management techniques our system addresses the practical challenges mentioned
above, while also providing a demonstration of the potential the LLMs have to transform game
content creation.
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Chapter 3: Technology Stack and System Architecture

As mentioned above the system follows a “client”-server architecture with a clear
separation of concerns. The server manages the generation of the world through modular services.
Each service has a retry mechanism with penalties and an exponential backoff mechanism for
better resilience. The system also has a context manager for the conversations with each NPC, in
order to provide conversation summarization. Each service output is validated via a custom
validation mechanism in order to have processable data for the client (game) to use.

3.1 Technologies Used

FastAPI [5] is a modern Python web framework that enables developers to build high-
performance APIs quickly with built-in data validation and serialization capabilities. It leverages
Python type hints to automatically validate, serialize, and document our API requests and
responses.

Swagger [6], now officially known as OpenAPI, is a specification for machine-readable
interface files that describe, produce, consume, and visualize RESTful web services. The
OpenAPI specification defines a standard, language-agnostic interface that allows both humans
and computers to discover and understand the capabilities of a service without requiring access to
source code or documentation.

FastAPI automatically generates OpenAPI documentation based on your Python type
annotations, function parameters, and docstrings without additional work. When we build an API
with FastAPI, we get an interactive Swagger Ul that lets developers explore and test our API
directly in the browser. This integration creates a seamless development experience where our
APl documentation stays in sync with your code as it evolves. FastAPI's creator, Sebastian
Ramirez, designed the framework with developer experience in mind, making it possible to build
well-documented, standards-compliant APIs with minimal boilerplate code.

Python Arcade [7] is a modern, easy-to-use library designed for creating 2D video games
with compelling visual effects and physics simulations. Unlike more complex game engines,
Arcade strikes a perfect balance between simplicity and power, making it ideal for beginners yet
capable of creating sophisticated games. The library provides intuitive ways to handle sprites,
animations, and collision detection while maintaining Python's readability and approachability.
Arcade was developed by Paul Vincent Craven as an educational tool to help students learn
programming through game development, focusing on clean code structure and object-oriented
principles. Game development with Arcade follows a logical pattern of initialization, game loop
updates, and rendering functions that mirror professional game development practices.

Tiled [8] is an open-source map editor primarily designed for creating 2D game levels and
environments. It allows developers and designers to build complex game worlds by arranging
graphical tiles in layers on a grid, supporting orthogonal, isometric, and hexagonal maps. The
program features a user-friendly interface with tools for drawing, filling, and selecting tiles, while
also offering advanced capabilities like custom properties, automation through scripting, and
support for various export formats compatible with numerous game engines and frameworks.
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3.2 System Architecture
The implementation consists of four major systems:
1) The Client system as seen in Figure 1.
2) The Backend system as seen in Figure 2.

3) The Content Generation system as seen in Figure 3.

4) The Game Logic system as seen in Figure 4.

Client

Renders

Arcade Client

/ /

/ Manages
HTTP Requesis
Ul Components Game Views
Interacts with /

AW

Game Logic

Figure 1: Client structure and other systems interactions

FE3

Backend

The Client Architecture system provides the player-facing interface of the RPG game,
handling all visual representation and user interaction. The Arcade Client serves as the main
application container, managing the game window, processing keyboard and mouse inputs, and
synchronizing with the backend via HTTP requests. It orchestrates the Game Views that present
different aspects of gameplay to the user. The Ul Components include reusable elements such as
dialogue boxes, inventory slots, stat displays, and combat interfaces that provide consistent visual
styling and interaction patterns throughout the game. This architecture follows a hierarchical
design where the Arcade Client renders the appropriate Game Views based on player context,
which in turn contain and manage various Ul Components. This system communicates with the
Game Logic layer to translate player actions into gameplay effects and render the current game
state in a visually appealing and intuitive manner.
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Figure 2: Backend system structure

The Backend system serves as the server-side infrastructure for the RPG game, with the
FastAPl Server functioning as its central hub. The World Generator creates dynamic game
content including maps, NPCs, quests, and encounters when players request a new game world.
The Context Manager maintains conversation history between players and NPCs, intelligently
summarizing lengthy dialogues to preserve memory while retaining important context. The NPC
Conversation System handles dialogue generation and responses, creating realistic interactions
that can advance quest objectives. The JSON Validator ensures data integrity by validating the
structure of information flowing between components, preventing errors that could arise from
malformed data structures. Together, these components form a robust backend that supports the
game's dynamic content generation and persistent state.

Content Generation

World Generator

NPC Conversation System

Generates Content

Generates Responses

Language Model

Queues Requests

Generation Queue

FastAPI Server

Figure 3: Content Generation system
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The Content Generation system is the creative engine of the RPG game, responsible for
procedurally generating engaging game content. At its core, the Language Model processes
natural language inputs and generates coherent, contextually appropriate outputs for game
elements. The World Generator interfaces with this model to create complete game worlds with
consistent themes, locations, characters, and storylines. The Generation Queue manages
processing prioritization, ensuring requests are handled efficiently even during high-demand
periods, while preventing the system from becoming overwhelmed. The NPC Conversation
System leverages the Language Model to create dynamic, contextually aware dialogue that
responds to player inputs and maintains character consistency across interactions. These
components work together in a pipeline architecture where content requests flow through the
Language Model, are processed asynchronously via the queue, and return results to the
appropriate game systems, creating a rich, ever-evolving game world that feels responsive and
alive.

Game Views

Uses

Game Logic v

Game Systems

/ \

Includes Includes
i Includes Includes

{

Quest System Combat System Inventory System Leveling System

Figure 4: Game Logic system

The Game Logic system encompasses the core gameplay mechanics and rules that drive
the RPG experience. The Game Systems module serves as the central coordinator for all
gameplay functionality, maintaining the game state and ensuring all subsystems work in
harmony. The Quest System tracks objectives, manages progression, and provides rewards when
conditions are met, driving the narrative flow of the game. The Combat System handles turn-
based encounters, calculating damage, managing combat actions like attack and defend, and
determining outcomes based on character stats and randomization. The Inventory System
manages the player's possessions, equipment, and consumable items, applying appropriate stat
modifications when items are equipped or used. The Leveling System tracks player experience,
handles level-up events, and applies stat increases as players progress, creating a sense of
character development and growth. These interconnected systems process player actions from the
Game Views, update the game state accordingly, and provide feedback that is rendered by the
Client Architecture, creating a cohesive gameplay experience that rewards strategic thinking and
exploration.
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3.3 Backend service design and implementation

The backend is developed using FastAPI framework which makes it ideal for building
real-time data applications and other high-performance applications; just like the PCG service

with the use of a LLM.

Figure 5: Backend Service Architecture

The backend consists of eight endpoints:

/model_name : A GET request to return to the user which
LLM model is used

/generate_world : A POST request that generates some
crucial information for the game world

/generate_npcs: A POST request that generates the NPCs
populating the world

/generate_quests: A POST request that generates the quests
that the player has to complete

/generate_encounters: A POST request that generates the
encounters the player has to overcome.
/generate_complete_world: A POST request that is the
combination of the other four requests

/current_world: A GET request that returns the complete
generated world

/conversation: A POST request that allows the player to
converse with each NPC
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LLM AP =2

‘openapi.json

default
ET /model_name Get Model Name

/conversation Converse

POST /generate_complete_world Generate World

/generate_world Generate World Structure

POST /generate_npcs Generate Npcs

POST /generate_quests Generate Quests

/generate_encounters Generate Encounters

Jeurrent_world Get Current World

Figure 6: OpenAPI view of the endpoints

3.3.1 World Generation

The complete generation of the world takes four steps to complete. First, it generates the
basic world structure. This is done by providing the LLM with some basic information about the
world we want to create; we implemented it in a way that even though the user input is minimal,
the language model is free to generate a completely custom world.

The fields that are required for the generation of the world consist of the genre, the number
of locations, the setting type, the tone of the world, and lastly the overall complexity. When the
request is sent, the server attempts to generate the world structure as seen in Figure 7

Figure 7: Prompt structure generation
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First we initialize a mechanism that will allows us to retry the world generation with a
specific penalty for the LLM in case it does not produce the expected outcome. Then we build
the prompt that we will use for the language model to get our world data (more on that is explained
in Chapter 4.1). In the event that the response is incorrect, we retry up-to five times, with different
temperature and top-p values (both are explained in Chapter 4.5). When the model creates a
response we do a series of parsing and validation tests.

Figure 8: Parsing of the response

First we try to parse the response; this means we try to get the JSON object from the
response. The response sometimes regardless of the specific prompt and rules set, can be in a
different format or with extra text that will make it un-processable. To combat this we have

implemented a regular expression (regex) based mechanic that tries to clean the data as seen in
Figure 9

Figure 9: First cleaning attempt of the response
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Then we proceed -regardless of whether its successful or not- with validating the data. The
process can be seen in Figure 10.

validate_data()

Check if input is dictionary

Return Error

Identify correct schema type

Valid

Invalid

Return Error

Sanitization Process

_sanitize_recursive()

Process based on data type

bje:
F Amray
!

Process each Tield
Add missing required fields

l l

Recursive call for Handle special cases Recursive call for Convert to correct
nested objects (e.g., loot items) each array item type

Process each item

Final JSON schema
validation

Valid

rnvalidi

Raise ValidationError

Update original data
Return success

Figure 10: Data sanitization flow

The response may contain extra fields that are not wanted (e.g., in the world generation, it
may have a field called "weather") or not have fields that are required (e.g., in the encounters, an
encounter may not have a damage value for the enemies). To combat that, we use a predefined
structure that the response must adhere to. Through the sanitization process, any fields that are not
present in our structure are removed, and if a required field is not present, it is initialized with a
default value (e.g., damage = 5). This process is done recursively in order to achieve sanitization
for all nested objects.
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If the sanitization process is unsuccessful, we throw an error and the generation for this
particular service (e.g., Encounters) fails, resulting in an empty object in our game. If the
sanitization process is successfully completed, we append the JSON object to a file and return it.

The world JSON has the structure seen in Figure 11:

"world™: {
m nan‘e m : rmorr "
"description™: "V,
"locations™: [
{
m nan‘e m : rmorr "
"description™: "V,
"FJIFDSE": rmorr
1s
"conflicts™: [
{
rr.-lan.err: rrrrr
"description™: """
i
1s
"loot™: [
{
rr.-lan.err: rrrrr
"description™: "V,
rrt_y-PErr: rrrrr
"damage™: 0.0,
"wvalue": 0.0

Figure 11: World elements structure

When the world generation is complete, we take the JSON object and use it for the
remaining three requests. The generate NPCs service takes the JSON and before starting the same
process it requires an additional input from the user, the number of NPCs to be present in the
game. When the NPCs are generated, their characteristics are stored in a file that is loaded into
memory, giving us the ability to start conversing with them. Then the exact same flow as
mentioned above is executed resulting to a JSON for the NPCs can been seen in Figure 12:
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"npostr |

"nposTr |

{
"name" :

"traits": {
"primary emction™:
"digposition™: "7,
"motivation™:

Frrr
r

o

:'nr
"background™:
"speech style™:

o
r

o

Frrr
r

Figure 12: NPCs characteristics structure

After the NPC generation we generate the quests, taking as input the world JSON, the
NPC JSON -because in some quests we have to interact with the NPCs- and the number of quests
we want. The final JSON structure can be seen in Figure 13:

"quests™: {
"quests": [

{

"name":
"description™:
"involwved npcs": [

rrrr

1.

"locations™: [

rrrr

1.

"rewards": {
"experience™:
"gold™: 0.0,
"loot™: [

{

rrrr
r

rrrr
r

0.0,

"name™ :
"description™:
"t.}‘-"}_:E ma. o rr-_
"damage™: 0.0,
yalue™: 0.0

FIFr
r

FIFr
r

|
:'ur
"zteps": |

FIFr
r

Figure 13: Quests structure
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Finally after the generation of the quests we create the encounters. The encounter service
requires the world JSON, the quests JSON and the number of encounters. This generates an object

as seen in Figure 14:

"encounters™: {
"encounters™: [

"I'lal‘[‘E " H mrr N
"description™: ",
"location™: "7,
"enemies™: [
{
"Z'lal'['E " : mrr N
"t-}'FE": HH'

"level™: 0.0,
"health™: 0.0,
"damage™: 0.0,
Tabilities™: []
I
]i’
"rewards™: {
"experience™: 0.0,
"gold™: 0.0,

"loot™: [
{
"Z'lal'[‘E " H o "
"description™:
rrt_y-perr: HH'

"damage™: 0.0,
"value™: 0.0

1

"difficulty": "",

"minimum level™: 0.0

o
r

Figure 14: Encounters structure

It is important to note that all the values in these objects are determined and generated
entirely from the LLM e.g. we do not provide any input regarding to the model regarding the
disposition of the NPC, or the steps required to complete a quest.
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3.3.2 Chat and Context Management

One of the key points of our implementation is the ability to chat with the LLM which
assumes the persona of each NPC created, for each different player. Each NPC creates a file that
stores all its conversations with each player. When the player initiates a conversation we send a
request like the one shown in Figure 15:

{

"user_name": "",
"chatPerson™: "",
"question”: ""

b
Figure 15: Chat request

The first thing that happens is we load any conversation for this NPC/player combination
into the memory; then we create a prompt that contains the question and we send it to the model.
When the model responds we add the response in the conversation history (both in-memory and
in the file) and check if the length of the whole conversation history exceeds a predefined context
size. If not we return the response.

Figure 16: Conversation with NPC

If it exceeds the size, we use the context manager which with a predefined reduction
range (e.g. 40%-60%) and a context size (e.g. 10000) create a prompt to the LLM asking it to
summarize the history. Finaly the summarized history updates the current history both in-

28



memory and in the file.

Figure 17: Summarization code

This approach allows us to provide the illusion of NPC memory, by shortening lengthy
conversations while also keeping the important points of the conversations. This is done to
manage both system memory and model memory (context) constraints and to enhance the player
experience through persistent dialogues.

3.4 Game client design and implementation

The game client for Realms of Quandria is developed using the Python Arcade library, a
library used mostly for creating 2D games. It provides an API that is easy to utilize and build
upon, allowing for relatively easy development. Our implementation follows a component-based
architecture where the game elements are developed as independent but interconnected modules.

The design follows a modular architecture that separates concerns and promotes
maintainability while enabling rich gameplay mechanics. This chapter examines the technical
design decisions, implementation strategies, and architectural patterns employed in the
development of the game client. Our game architecture consists of the view system, which
manages the different game screens and user interfaces, the model system which defines the game
entities and their respective behaviors, the systems layer which implements all the game
mechanics such as the combat, the inventory and the quests. We also have the world generation
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component, which interfaces with our server to generate the game content. Finally, we have a map
management implementation which loads maps created with an open source program called Tiled.

The View management is built on Arcade’s view framework, allowing use to have clean
transitions between different game states and screens. Our implementation uses a hierarchical
approach where specialized views are handling specific aspects of the gameplay. A high level

view of our flow can be seen in Figure 18.
l GameWindow l

l TitleScreenView l

3
l MainMenuView l

[ ‘WorldGenerationView ]

| LoadingView l

GameView

[ LocationView ] [ Questview ] InventoryView

Figure 18: Views flow

Many of the game's core functionalities are broken down into several Systems. The combat
system handles the turn-based combat where there are two basic types of moves. The flow of the
turns is as follows: first the player, then one of the enemies, then the player and so on. Both the
player and the enemies in their turn either block or perform an attack. If the player attacks, they
apply their damage to the enemy they clicked. If the player decides to defend, the damage is
reduced based on the formula total_defense = base_defense + (base_defense * 0.6). If the enemy
defends, the total damage they receive is: total_damage_taken = player_damage — (player_damage
/2).

The reward and leveling systems are fairly simple. The leveling system manages when the
player levels up and what happens upon level up. There is a simple formula to find what attribute
of the player increases upon level up. The player's health increases every level. Beyond that, on
even levels (e.g., 2, 4, 6, etc.) the damage is increased. On odd levels (e.g., 1, 3, 5, etc.) the defense
is increased, and every 10 levels all attributes are increased. Any experience remaining upon level
up is carried over to the next level. The reward system gives the rewards of any encounter and
quest completed. These rewards include items, gold, and experience.
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The inventory system handles everything regarding the storing of the items. It creates the
items with their attributes and some basic icons, it provides us with the ability to equip, unequip,
or sell the items and assign if the items (depending on their type) are stackable or not.

Lastly, we have the quest system, the most complex among our systems. It begins by
parsing and categorizing quest data during initialization, breaking down quest steps into actionable
objectives based on keywords. It identifies three types of objectives: NPC interactions (triggered
by the keywords: "talk", "speak”, "find", "meet", "ask", "deliver", "give", "bring", "return",
"interact"), location visits (identified by the phrases: "go to", "visit", "travel™, "find", "explore",
"reach™) and encounters (containing the combat terms: "defeat", "kill", "slay", "fight", "battle",
"combat”, "vanquish”, "engage"). During gameplay, the system continuously monitors player
activities through specialized checking methods. When a player interacts with an NPC, the system
uses a method to compare the NPC's name against existing objectives, using both exact matching
and partial word matching for flexibility. Similarly, when players visit locations or complete
combat encounters, the respective checking methods analyze if these actions fulfill any pending
quest objectives. The matching algorithms are intelligent enough to handle variations in naming
and context. When an objective is completed, the system updates the quest's step progress,
potentially marking entire quests as complete when all steps are finished. It manages quest rewards
through integration with the reward system, tracks recently completed quests for Ul notifications,
and provides mechanisms for developers to manually complete quest steps when needed. The
system culminates by monitoring overall quest completion, triggering the game's ending sequence
when all quests have been completed, creating an end to the player's journey.
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Chapter 4: Content Generation & Management Methodologies

This chapter focuses on the methodological approaches underlying the technical
implementation presented in Chapter 3. While the previous chapter detailed the architectural
components and their implementation, this chapter examines the reasoning, theoretical
foundations, and experimental iterations that led to our chosen approaches. We explore the
methodological challenges unique to applying large language models in procedural content
generation and present a framework for evaluating and improving generative systems for games.

The basic methodological challenges addressed are:

1) Designing effective prompts that balance creativity with structural constraints.
2) Developing validation mechanisms in order to maintain the content integrity.
3) Formulate context management techniques to maintain content integrity.

4) Establishing workflows for content generation and integration.

Throughout this chapter, we will analyze the design decisions that shaped our
implementation, discussing alternative approaches that were considered and the rationale behind
our final solutions.

4.1 Prompt Engineering Methodology

Prompt engineering is the base for a successful LLM interaction, establishing a boundary
between creative variation and game-usable content. Our methodology evolved — through trial
and error — from simple and unstructured to sophisticated and structured prompts.

We adopted a systematic approach to our prompt engineering, moving through a multi-

phase process of development:

1) Unstructured Prompts: Our initial experiments involved using minimal restrictions,
simply asking the model to, "generate a fantasy world," or "create some NPCs for an
RPG." While these attempts resulted in a creative output, the model generated content
that was extremely inconsistent—often skipping required fields or including irrelevant
text.

2) Template-Based Prompts: We then tried providing basic templates with field names,
but we noticed that the LLM still struggled with consistent formatting and included
elements outside the requested structure.

3) Example-Driven Prompts: By including complete examples in our desired format, we
achieved better consistency but we encountered new problems with filed validation
and type constraints.

4) Constraint-Explicit Prompts: Our final approach uses a combination of structural
examples with explicit rule statements, type declarations and field requirements
specifications.

By transitioning from generic instructions to explicit examples with well-defined
constraints we improved the output consistency up to 80% [9].
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A big challenge was finding the balance between creative freedom and structural
constraints. Too many constraints reduce the diversity and creativity of the generated content,
while too few constraints produce unusable outputs. We overcame this issue by creating a
constraint categorization framework of Essential Structural Constraints, which are non-negotiable
requirements for the game to function (e.g., field presence, data types, etc.), and Content
Coherence Constraints, which are guidelines encouraging thematic consistency and logical
relationships. For example, in world generation, we used strict constraints to ensure that all the
locations had all relevant fields (name, description, and purpose) of the appropriate data types
(string). However, we provided minimal restrictions on the narrative connections, allowing the
LLM to create the relationships between locations and other world elements.

Besides the general prompts structure, we approached each part of the world generation
(world, quests, NPCs, encounters) with specialized prompts. For World Structure Generation, we
focused on the thematic consistency and the description of the world. In NPC Generation, we
focused on the speech style, the history as well as the characteristics of each NPC (e.g., emotions,
disposition). Quest Generation involved structure prompting with step-based action specification.
For Encounter Generation, we focused on creating prompts that balance enemy diversity and
scaling constraints.

With trial and error, we identified the best possible prompt setups for each part of the world
generation process. For instance, we found that in Quest steps generation, if we provide some
keywords regarding the type of step, we have better chances to create resolvable steps, resulting
in our ability to complete quests.

4.2 Validation Methodology

While Chapter 3 covers the technical implementation of our validation mechanism and
this chapter describes the methodological strategies that informed the design fix and validation
development stage.

We developed four distinct validation layers:

1) Structural Validation: validates the existence of required fields and the correct field
type.

2) Content Validation: validates the relationships between elements (e.g., ensuring
quests reference existing locations).

3) Balance Validation: validates numerical properties to ensure gameplay mechanics are
followed (for example, damage from enemy actions is supposed to inherently scale).

4) Experience Validation: validates the generated content for player experience quality.

Using layers of validation means that every layer is designed to have focus on a discrete
aspect of quality rather than seeking to hold a single layer accountable for all deviations within
the content. When a validation failure occurs the validation system can apply fixes that will
correct or accommodate the error rather than reject the content outright.

Our validation schema was developed through an iterative process informed by failure
analysis. Rather than trying to anticipate all of the possible model failures beforehand, we:
e Collected examples of failed generations from our early experiments.
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e Categorized the patterns of failures into types.
e Developed validation rules based on observed failure patterns.
e Added specific recovery mechanisms for common patterns of failure.

This process resulted in a schema that was developed to account for the specific failure
modes of language models versus generic patterns of data validation [10]. For example, we
discovered that the LLM would frequently return numeric values as a string and added specific
type checking rules to match this pattern.

An innovative aspect of our methodology is the bidirectional relationship between validation and
prompt engineering. Rather than treating these as separate concerns, we used validation failures
to systematically improve prompts:

e ldentify common validation failures across multiple generation attempts.

e Determine whether the failure originates from the prompt or some limitation of the LLM.

e For prompt-based failures, add explicit constraints addressing the specific issue.

e For model limitations, implement automated correction in the validation layer.

This opened up the system to systematic improvement through each generation failure
leading to better outcomes in the future. We interpreted this as a co-evolution of improvements
of both prompts and validation rules, with each field of domain contexts evolving to limit the
limitations of the other whilst producing improvements in their own.

4.3 Context Management Methodologies

Dynamic NPC interactions require a context management to maintain thematic coherence
and character consistency. Our methodological approach to this extends beyond the technical
implementation as is described in Chapter 3.

A key methodological insight in our context management approach is the abstraction of
"memory" into multiple layers: Surface Memory, which consists of recent conversation turns
maintained verbatim; Condensed Memory, which includes summarized historical interactions;
Trait Memory, which maintains persistent character attributes reinforced in each interaction; and
World Memory, which contains stable facts about the game world provided as context. Our
exploration of this approach revealed that LLMs handle conversation memory most effectively
when personality traits are continuously reinforced even as conversation history is compressed.
This finding informed our practice of including complete character trait descriptions in every
interaction prompt, ensuring personality consistency despite context window limitations.

We adapted our strategy for conversation summarization through an experimental process
of different summarization methods. We began with Extraction-Based Summarization and
initially tested the extraction of "important” turns using a procedure of keyword analysis, but we
quickly realized the extraction method was not capturing the conversational flow. We then moved
to testing a strategy of Fixed-Ratio Compression that worked by applying fixed compression
ratios (i.e., ratios that reduced the conversation excerpts to 30% of the original length), but we
realized appropriate levels of compression changed depending on the density of the content. Our
final trial method was called Range-Based Adaptive Summarization and it worked using a target
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reduction range of 30-70%. In this context, the summarizer applied greater compression based on
lower conversational density, and then applied less compression to the more dense improvements
of knowledge. When evaluated experimentally, the range-based adaptive summarization method
outperformed the fixed approaches in terms of maintaining coherence in the conversations, and
the flexible process empowered the system to make contextually-appropriate decisions about
what information to retain.

Although in-game functionality could have been accomplished through just simple in-
memory storage, we intentionally designed a file-based mechanism for conversation persistence
to allow for the opportunity to see into the development process. There were some assets to the
method we employed: allowing for review of how conversations progress over multiple play-
throughs, enabling sorting through a player's filtered and unfiltered experience concerning
whether conversations maintained appropriate coherence, creating an annotatable dataset to assist
in improving the system for future iterations, and supporting human analysis of the dialogue
created by Al for assessing qualitatively whether it was of acceptable quality. Our method reflects
the broader methodology of "observable Al" methodology that our development emphasized:
having a means to be transparent about the behavior of the Al to enable an additional layer of
review during the development phase. The file-based persistence mechanism allowed to witness
how conversations evolved over time and how they followed patterns that could then be useful
for informing our next improvements to the system.

4.4 Interdependent Content Generation Methodology

The sequential generation of world elements with explicit interdependencies represents
one of our most significant methodological contributions. This approach the "coherence
challenge” in procedural content generation—the challenge of creating connections between
independently generated game elements [11].

The process that we used began with a dependency analysis of traditional RPG content to
reveal the natural relationships between the elements of the game: the world conveys the setting,
tone, physical locations; NPCs occupy positions in the world and refer to particular locations in
the world; quests involve both NPCs and locations as participants and destinations for quests; and
encounters take place in a specific locations and may or may not link in some way to the quest.
This analysis recognized a natural dependency chain which helped to inform us to produce
content in a sequential manner, building on and extending content rather than simply producing
elements in isolation. We assessed this dependency chain approach against other content
generating methodologies: a parallel approach (producing all content simultaneously and then
post-process the content to make the links); a bi-direct approach (having quests first, and
generating NPCs and locations as support); and player-driven approach (producing a response to
the player actions). In testing the methodology, we found that sequential generation of content,
based on explicit dependencies provided the most coherent results while still providing enough
variance between generating sessions.

A key focus of our method is managing references from generated entities. We use explicit
reference passing between stages of generation, where each stage is provided with the complete
context through the prior stages of generation, allowing for more natural reference to form
without attempting to establish connections through complicated post-processing. This is
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different than PCG approaches, which generate content in disconnected systems or processes and
later try to establish connections through mapping or transformation. By generating the content
in the contextually aware sequence, our system generates game elements that integrate more
naturally.

Beyond explicit references, our system facilitates thematic unity through inherited
conceptual characteristics. During the world generation phase, we establish primary thematic
aspects (such as genre, tone, setting) that will be utilized and plumped in downstream generation.
For instance, if the world generation phase generates a “dark fantasy” world with thematic
characteristics such "corruption” or "redemption,” those thematic characteristics will carry
through the generation process, subsequently influencing NPC personalities, quest narratives and
encounter designs. This process of thematic inheritance creates a more coherent game experience
than if we simply rely on individual elements referring to one another. This style of reasoning
helps to solve some challenges associated with thematic mixture in game procedural narrative
generation. By beginning our thematic core elements early in the generation, and then permitting
those themes to radiate downstream through the generation pipeline, we achieve a greater level
of coherence in the player experience.

4.5 Error Recovery and Resilience Methodologies

Error handling in Al-assisted content generation requires alternative approaches that differ
from traditional error management. Our methodology acknowledges the probabilistic nature of
the LLM outputs and implements a multi-layered recovery strategy.

Our implementation uses a progressive parameter adjustment approach for handling generation
failures:
1) The initial generation uses parameters (top_p and temperature) with values that favor
creativity.
2) If generation fails, these parameters are adjusted to reduce the creative variation (lower
the top_p and temperature).
3) With each failed attempt the system implements an exponential backoff to prevent
resource exhaustion.

Temperature and top-p (nucleus sampling) are two critical parameters that control how Large
Language Models generate text, working together to balance creativity with coherence.
Temperature adjusts overall randomness—higher values (>0.8) encourage the model to consider
less probable tokens, producing more diverse and creative outputs ideal for brainstorming or
creative writing, while lower values (<0.5) favor the most probable tokens, generating more
predictable, focused responses better suited for factual information or code. Meanwhile, top-p
dynamically limits the token selection pool—a setting of 0.9 means the model only considers
tokens within the top 90% of probability mass, excluding extremely unlikely options while
maintaining reasonable variation. In applications like our RPG engine, these parameters are
strategically adjusted for different content types (higher for world-building creativity, lower for
structured quest design) and can be dynamically modified during retry attempts, starting with
higher values for creative exploration before gradually shifting toward more conservative settings
if initial generations fail.
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This method strikes a good balance between creative exploration and reliability. It allows
the system to first explore more creative generation and only fall back to more constrained
generation when needed. Its progressive nature gains the benefit of preserving as much creative
variation as possible while ultimately succeeding.

A critical aspect of our methodology is the implementation of a graceful degradation
hierarchy for cases where generation cannot succeed despite multiple attempts. Our approach first
attempts generation with model parameters optimized for success, and if this fails, we then use
saved fallback content associated with the specific content type. If there are no saved fallbacks,
we then generate procedurally generated placeholders for the specific content type. If generation
of the placeholder content fails, we lastly consider minimal compatible defaults. This design
assumption provides assurance that even in the most extreme unicorn situations in which we
cannot generate compatible content, the game is playable. The combination of multiple fallback
options ensures central functionality is maintained, and degrades gracefully when required.

4.6 Integration Methodologies for Game Systems

The final challenge we faced was connecting our rich narrative content with actual gameplay
systems. Instead of imposing a technical template system for writers, we created a smart system
to read natural language and highlight the key gameplay elements. When our system analyzes
quests, it picks out action words like "talk" or "defeat" to create player objectives. This approach
allows the system to work with natural language descriptions rather than requiring structured
markup or templates. By identifying action verbs and their objects, the system can transform
narrative descriptions into actionable gameplay objectives.

The natural language interpretation approach represents a significant advancement over template-
based PCG systems, which typically require rigid formatting that constrains creative expression.
Our keyword-based method preserves creative freedom while extracting the structured data
necessary for gameplay mechanics.

Our entire integration process uses a hybrid strategy that blends procedurally produced
content with hand-designed game systems:
1) Manual Design: Progress systems, spatial map structure, and essential game
mechanics
2) Procedural Generation: Characters, quests, world story, and encounter information
3) Hybrid Components: NPC actions, battle balancing, and spatial-narrative mapping

This hybrid strategy acknowledges the complementary qualities of Al and human
innovation. While Al is excellent at producing a wide range of narrative content and character
personalities, human designers are better at building stable, well-balanced systems and spatial
landscapes.

Our technique outperforms both fully procedural generation and pure manual design by
identifying this methodological border between manual and procedural parts. The Al-generated
content is given structure and purpose by the stable framework that the human-designed
components offer.
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This chapter presented a comprehensive framework for integrating LLMs into PCG. The
key principles emerging from this work include structured creativity using targeted constraints to
channel creative variation where it adds value while ensuring technical functionality; layered
validation implementing multiple validation layers that address different aspects of content
quality and correctness; context-aware generation creating interdependencies between generation
stages to maintain narrative coherence and thematic consistency; resilient processing designing
systems that can recover from generation failures through progressive adjustment and graceful
degradation; natural interpretation bridging the gap between natural language and game
mechanics through keyword-based interpretation; and a hybrid design philosophy combining the
strengths of manual and procedural approaches rather than relying exclusively on either. These
principles form a coherent methodological framework for Al-assisted game development that
addresses the unique challenges of language model integration. The framework balances the
creative potential of these models with the technical requirements of functional game systems.
By detailing the reasoning and alternatives behind our chosen approaches, this chapter provides
a foundation for future work in Al-assisted game development. The methodologies presented here
can be adapted and extended for different game genres, content types, and technical contexts.
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Chapter 5: Gameplay Implementation

This chapter aims to examine the implementation of the gameplay systems and mechanics
in RoQ, focusing on how procedurally generated content is integrated with the gameplay
mechanics. The chapter brings together the technical infrastructure described in Chapter 3 and
the methodological approaches from Chapter 4, showing how theoretical concepts are translated
into gameplay features and mechanics. The Figure 19 shows the flow of our game implementation

that will be analyzed in this chapter.
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Figure 19: Complete Game flow Diagram

Update Player
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5.1 Menus

The first screen the player sees when starting the game is the Title Screen as seen in Figure 20

Realms of Quandria

Click anywhere to continue

Figure 20: Title Screen

The second screen is where the player is prompt to either generate a new world, or load
the existing one as can be seen in Figure 21. This is like our Main Menu screen.

Realms of Quandria

Gonosate New Workl

Load Existing Workl

Figure 21: World Selection or Generation screen
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If the player chooses the Load Existing world, the player is shown a loading bar for a brief moment
and then gets into the Game. If the player chooses the Generate New World option, he is shown a
screen where he is prompted with sliders and text inputs for configuring world parameters (genre,
setting type, tone, complexity, number of locations/NPCs/quests/encounters) as seen in Figure 22.

World Generation Settings

Back to Menuy

Figure 22: World Generation Settings Screen

Then while the world is being generated, the user can monitor the step progress from a
loading bar as seen in Figure 23.

Generating World

Creating NPCs...

Figure 23: Loading Screen where the world generation progress is displayed.
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After the game is completed, the player is shown the end screen, where the player's level and stats
are displayed as well as the quests that were completed as seen in Figure 24.

Congratulations! You've Completed the game

Final Level: 1
Health: 500 Damage: 80 Defense: 10
d: 0

Total Experience Earne

Your Completed Adventures:

Thank you for playing!

Ext Game

Figure 24: End screen with game summarization

5.2 Game Entities

The game entities in RoQ follow a traditional RPG structure all while integrating
procedural generated content. There is a player who can explore, interact and talk with NPCs,
engage in combat and progress the character, all with enhancement by LLM-generated content.

5.2.1 Player Characteristics

The player controls are fundamental. He can move using the keys: W, A, S, D each moving
him in a direction as seen in Figure 25. He can access the inventory by pressing the key I, see the
quests and their progress at any time by pressing TAB and can interact with NPCs, locations,
encounters and the Gem of Healing by pressing E.
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Figure 25: Character Movement

The player also has several attributes in lines with every RPG character. He has health,
damage, defense, exp (experience) and a level.

The progression system uses a formula-based approach for leveling, as described in
Chapter 3.4. The player's health increases with every level, damage increases on even-numbered
levels, and defense increases on odd-numbered levels. Additionally, every tenth level provides a
significant boost to all attributes.

This systematic approach ensures balanced progression throughout the game while still
allowing for meaningful character development. The player's stats directly influence combat
effectiveness, making progression feel impactful.

5.2.2NPC

The NPCs do not have any stats, or movement mechanics as they are stationary. The
spawn points of the NPCs are loaded at random, from a predefined list created using the Tiled
map editor. The only functionality they have is the interaction with the player and the conversing
with him. When the player interacts with an NPC a dialog window is shown where the player
writes and sends the message to the LLM; when the response is ready it is printed in the dialog
window as seen in Figure 26.
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Figure 26: Player and NPC chat window

If the NPC is involved with one or more quests, upon interaction it marks that quests step
as completed.

5.2.3 Enemies

Just like with the NPCs, the enemies do not have any movement mechanics. But they
do have health, damage and defense statistics as can be seen in Figure 27. They do not have any
sort of controls. Their attack and defend moves are handled by the Combat System as is

explained in Chapter 5.5.1.

Figure 27: Enemy stats
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5.2.3 Gem of Healing

Within the game world, the player will discover the Gem of Healing. Upon interacting
with it the player’s health is restored to full as can be seen in Figure 28. This healing mechanic
provides a strategic resource for players between challenging encounters, especially valuable
after difficult battles when healing potions might be scarce.

Quest Board Gem of Healing

Figure 28: Gem of Healing restoring the player's health

5.3 Game World

The game world view acts like a central hub for the player as seen in Figure 29. Inside
this view are located all the NPCs with whom the player can interact and converse, there is the
Quest Board where the player can view the quests for this world, there is the Gem of Healing
which upon interaction heals the player to full HP and lastly there are the location-interactions
which upon interaction transport the player to a new location.
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Spire of Ty;md{aplots Crumbled Ruins of Arthelion
*

Shadowsta_!ker Kaelor

Quest Board Gem of Healing

o

Figure 29: Game Hub

5.4 Locations

As mentioned before, the location’s entry point is located in the hub, it is depicted as a
star with the name of the location above. Upon interaction the player is transported to the wanted
location. The current location’s layout is randomly selected each time from one of four predefined
locations created with Tiled. Inside each location the player may find an encounter — if an
encounter is created for this location- and interact with it to start the combat as can be seen in
Figure 30. Upon first visiting each location a check is initiated to see if this location is listed in
any quest step. If it is listed, then the current step is marked as completed.

Caverns of Whisperiné Shadows

A labyrinthine cave system deep underground, packed with mystic treasures waiting to be
discovered by brave souls.

Echges of Cavems in Whispers

Figure 30: Location view with an encounter
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5.5 Encounters

Upon interacting with the encounter in the location, the player is transitioned to the
combat screen as seen in Figure 31. There are spawned the enemies of that encounter one to four
enemies depending on the complexity of the world and the difficulty of the encounter.

Turn: player_turn

Ancient Shadow Guardian Cursed Shadow Assassin

2 fal

Figure 31: Combat screen

Combat continues until either all enemies are defeated or the player's health reaches zero.

5.6 Game Systems

The game consists of four visible systems; the combat, inventory, leveling and quest
systems. Each of them handles a specific aspect of the game, though some of the systems are
interconnected.

5.6.1 Combat System

The combat system implements the turn-based encounter model mentioned before. It
maintains the state machine for the combat, tracks the turn order and processes the combat
actions. There are 3 possible states of combat, the player turn, the enemy turn and a waiting state
that acts as a buffer between the other states.

Combat begins with the player having the first turn, followed by enemy turns cycling

through all active enemies. The player can chooses between three actions:
1) Attack: deal damage to the clicked enemy based on the player’s damage attribute

47



2) Defend: reduce incoming damage based on the defense formula: total defense =
base_defense + (base_defense * 0.6).
3) Flee: escape the combat in case it is difficult for the current level.

The enemies follow a very simple probability-based decision making process:

1) 50% chance to attack the player.

2) 50% chance to defend, reducing the incoming damage of the player by half in the next
turn.

Upon victory, players receive rewards including experience, gold, and potentially items
and are returned to the game hub.

The system successfully integrates LLM-generated enemy definitions by applying their
attributes (health, damage) directly to the combat calculations, ensuring that narrative
descriptions of enemy power translate to appropriate gameplay challenge.

5.6.2 Leveling System

The leveling system manages the character progression. It handles the exp calculation, the
level determination and the stat increases. To calculate the experience, we implemented a custom
non-linear progression curve using the base_exp * (level ~ exponent). Any exp remaining is
carried through the next level. To upgrade the player stats we follow a systematic pattern where
health increases every level, the damage on even levels and the defense on odd levels. Every ten
levels we provide a significant stat boost to the player.

Upon leveling up the game displays to the player a notification indicating the new level
and stats as seen in Figure 32.

Level Up! You are now Ievel JT'
Level

Health: 515 (+15)

Damage: 84 (+4)
Defense: 11 (+1)

Press any key to continue

Experience gained: 200.0

Figure 32: Level up stats increase notification

48



In order for the game mechanics to work correctly, the leveling system is integrated with
other systems that may result in a character level up. These systems are the combat system the
quest system and the rewards system.

5.6.3 Quest System

The quest system represents one of the most sophisticated and complex components in
the game, responsible for tracking narrative progression and interpreting LLM-generated quest
content into actionable gameplay objectives.

Players can access the quest management interface through two distinct methods. The first
option involves locating and interacting with the Quest Board, a physical object in the game world
that resembles a wooden notice board. When approaching this board, a prompt appears instructing
players to press 'E' to interact with it. Alternatively, players can press the TAB key at any time
during gameplay to instantly access their quest log, providing convenience regardless of their
current location in the game world.

In the quest view, players are immediately greeted by a list view of all available quests.
Each quest list view contains key pieces of information at a glance, including the displayed title
of the quest, a symbol to indicate its status (completed, etc.), and a short excerpt of the quest
description. In addition, with each quest entry, there is a button labeled "View Details" next to
the title, which allows players to take a closer look at the specific quests. At the top of the quest
interface is a filtering system that allows players to organize their quests into three categories: All
Quests (showing all the quests available to the player), Active Quests (showing quests that have
started), and Completed Quests (showing quests that have been completed) as can be seen in
Figure 33.

Quest Journal

apons for a final battle:

son Citadel Hoard Protection s in Progress
Secure valuable lreasures guarded by fearsome warmiors.

Figure 33: Quest screen containing all quests.

Once players have chosen a quest from the quest list, the view will transition to the more
detailed quest view, giving detailed information about the selected quest. The detailed quest view
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prominently displays the full quest description. Below the quest description, players will see a
detailed outline of the specific objectives that need to be completed in order to finish the quest,
where each step is clearly identified as either completed or not.

In addition to the quest description and outlined objectives, the detailed quest view
provides important information about quest locations and characters that include a section titled,
"Locations,” that identifies specific areas in the game world that need to be visited in order to
progress in the quest. There is another specific area entitled, "Involved NPCs," where players can
see a list of pertinent characters that only need to file in a game world. This information allows
players to better plan out their travels to complete the quest objectives by knowing where they
can go, and who they will need to speak to.

Quest rewards are displayed on the expanded view. While completing quests, players
typically earn experience points toward their level, in-game currency (gold) and often items that
may include special weapons or armor. Each reward item will have its own attributes listed. If
players find that they are unable to complete a quest or quest step, the game provides a fallback
option indicated as "Complete Step (If Stuck)". This is accompanied by a warning that indicates
rewards will not be provided if quests are completed manually. This option ensures players do
not become "permanently™ locked out of a quest due to unintended consequences with procedural
generation options.

The Thornwood Sword Hunt

Quest Rewards:
Experience: 100.0 Gold: 50.0 Reward Items:
* Firesword - The Blade of Eldoria (Weapon, Damage: 25.0)
A flaming sword forged from the heart of a fiery dragon.

Step 1. # In Progress
go to Thornwood Forest and explore

Step (If Stuck)

Figure 34: Quest detailed view

As the player progresses through the game, the quest system continuously checks if any
step is completed. Completed steps are automatically marked when the corresponding actions are
performed, whether that involves conversing with an NPC, visiting a location, or defeating
enemies in combat. The system interprets player actions contextually, matching them against
quest objectives through keyword recognition and entity matching. This can be seen in Figure 35
where the first step is completed.
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The Thornwood Sword Hunt

ire into the enchanted forest lo find weapons for a final battle

SISSSESSSEESSSSESSESEEEEEEEEEEEEEEEEEEER
NPCs: Melk

Quest Rewards:
Experience: 100.0 Gold: 50.0 Reward Items:
* Firesword - The Blade of Eldoria (Weapon, Damage: 25.0)
A flaming sword forged fram the heart of a fiery dragon.

Step 1:+ Completed
go to Thomwood Forest and explore

Step 2:# In Progress
interact with Mellora, The Moon Steward

Complete Step (If Stuck)

Figure 35: Quest progress update

Upon completing all the available quests, the end of the game is triggered, showing the
end screen.

5.6.4 Inventory System

The inventory view in RoQ as seen in Figure 36 consists of a 24-slot grid interface that
allows the player to manage the items they have acquired in the game. The inventory is accessible
by pressing the "I" key, which temporarily pauses the game and presents a view of the player’s
entire inventory of weapons, armor, potions, and miscellaneous loot. Each item appears as an
icon with color-coded backgrounds—red-orange for weapons, blue-violet for armor, green for
potions, and a neutral gray for general loot—providing instant visual categorization. Hovering
over an item will display a tooltip with comprehensive information about the item, including a
title, type, statistics, and descriptive text produced by the LLM.

The interface employs an intuitive right-click interaction system that provides contextual
options based on the item type. For weapons and armor, players can equip them to their respective
slots (main hand or chest), immediately applying their statistical bonuses to the character's
attributes. When equipped, items display a small "E" indicator in their slot and appear in the
equipment panel on the right side of the screen. For consumable items like potions, the "Use"
option immediately applies their effects—typically healing the player's health by the potion's
specified protection value. The right panel of the inventory screen serves as an information hub,
displaying the player's current statistics including health, damage output, and defensive
capabilities. Below these stats, the currently equipped items section lists all active gear.
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Figure 36: Inventory view showing items, tooltips, character stats & equipped items
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Chapter 6: Evaluation and Results

The integration of the LLM into our game presented unique challenges that required
extensive evaluation across multiple aspects. This chapter examines the performance and
reliability of the RoQ system through technical analysis and qualitative assessment. We evaluated
the system’s computational performance and the technical robustness of our implementation. By
analyzing response times, success rates and error patterns we gained insight into possible points
of failure and how the current implementation might scale and evolve in practical game
development contexts.

All the tests are performed in a system with the following specifications:

Part Spec

CPU Intel i7-6700

GPU NVIDIA RTX 3070 (8GB)
RAM 32GB

The main focus of our evaluations is system performance and robustness. To find out if
this system can be applied to real world applications we needed to test all endpoints to determine
if the time of the requests is in accordance with user experience best practices [12]. In order to do
so, we implemented an automated testing framework.

To test and run the LLM locally, we used the Ollama [13] framework. Ollama is a
framework that allows users to run open-source LLMs locally on their machines. Among the
plethora of available LLMs we tested Gemmaz2 [14], WizzardLM [15] and Gwen2 [16]. From our
testing we saw that Gemma2 was slower and more inconsistent than the other models.
WizzardLM was faster than Gemma2 but the responses were inconsistent as well. We settled on
Gwen2 which was the faster and more consistent between these three.

This framework tests all the endpoints used in the generation of the complete world, one
at a time for a total of 100 tests per endpoint. The data used for each test iteration were:

Field Data

Genre adventure

Locations 4

Setting type medieval

Tone classic fantasy

Complexity moderate

NPCs 4

Quests 3

Encounters 4

Prompt Hello, what can you tell me about this place?

It logs metrics per endpoint, as well as some overall metrics. Some of these metrics are
the success rate of our requests, the average, minimum and maximum duration of each request.
The output of these metrics is stored in files, one for the errors that occurred, one timing all the
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requests and one with various metrics per request. Then after the evaluation is complete, we
process the data we gathered to visualize our findings.

6.1 Response Time Analysis

Response time is a critical metric for understanding the real world viability of LLM
integration in game development flows. The following figures show the distribution of response
times across our endpoints: world generation, NPC generation, quest generation, encounter
generation and NPC conversation.
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As seen from the visualization, response times varied significantly across different content
types. World structure generation maintained the most consistent performance profile regarding
the generation requests with median response times of 10.56 seconds and relatively narrow
interquartile ranges, suggesting predictable performance for basic world creation. In contrast,
encounter generation showed the widest variance with a median of 20.93 seconds but extremes
reaching higher than 95.67 seconds in some cases, indicating greater computational complexity
and potentially more challenging validation processes (or issues) for this content type.

Quest generation demonstrates an interesting middle ground, with generally consistent
performance (median 14.04 seconds) but occasional outliers, particularly visible in the 95th
percentile measurements (32.52 seconds). This pattern aligns with our implementation approach,
where quests require complex narrative structure while maintaining connections to both world
elements and NPC characteristics.

Response Time Distribution: conversation
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Figure 38: Conversation response time distribution.

As can be seen in Figure 38 the most consistent performance of all the requests is the
conversation’s endpoint. With a median response time of 1.35 seconds and a maximum of a little
higher than 3 seconds.
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6.2 Performance stability

For real world applications the stability and predictability are equally important as speed.
To evaluate this aspect we analyzed response time patterns across 100 generation iterations.

Average Response Time by Iteration and Endpoint
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Duration {(seconds)

Endpoint
Figure 39: Response Time heatmap visualization.

The heatmap visualization as seen in Figure 39 reveals some interesting patterns across
the iterations. Most notably we see that the performance remains relatively stable for all requests
across iterations except the encounters generation. This suggests that the generation was failing
and our validation mechanism was operating successfully.
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Average Response Time by lteration and Endpoint
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Figure 40: Conversation response time heatmap.

Looking at the heatmap for the conversation endpoint in Figure 40, we can see a fluctuation
in the duration. However, due to the low response times, this is well within acceptable range.
These variations likely stem from the dynamic context management system that adapts to
conversation length and complexity while maintaining responsive interactions.

The complete pipeline performance analysis in Figure 41 shows that full world generation
(including all four content types) required an average of 50.63 seconds across 100 iterations.
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While this duration exceeds what would be acceptable for real-time gameplay generation, it falls
within reasonable parameters for game initialization or level loading processes.
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Figure 41: Performance per endpoint
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Similarly for the conversation endpoint across 100 iterations as seen in Figure 42 we get
an average of 1.4 seconds. This time is completely acceptable for a real time communication
between the player and the NPC.
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Figure 42: Conversation performance.

6.3 Success Rates

Besides performance, system reliability is essential for practical applications. The
cumulative success rate analysis shows the overall success of our system. Of our four endpoints
for world generation only one does not have 100% success rate as can be seen in Figure 43. The
encounter generation which falls down to 85% success rate. The encounter generation failures
primarily stemmed from validation issues where the generated content could not be reconciled
with the structural requirements of the game system.

The two errors that we observed were a validation error ( "Validation error at encounters
-> 2 ->rewards -> loot -> 0: 'value' is a required property™) and a parsing error that occurred due
to bad generation (Failed to generate encounter structure after 5 attempts. Last error: Failed to
parse LLM response as JSON: Expecting ', delimiter: line 12 column 62 (char 373)" ).

59



Cumulative Success Rate by Endpaoint
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Figure 43: Success rate per world generation endpoint.

For the conversation endpoint we have a 100% success rate across all tests.
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Figure 44: Success rates for conversation endpoint.

6.4 Conclusion

The RoQ system effectively balances the computational demands of LLM-driven content
generation with the practical requirements of game development workflows. Despite the
complexity of generating interconnected narrative elements, the system maintains acceptable
response times and high reliability rates. The architectural choices, particularly client-server
separation and sequential content generation approach, validate the system's performance. While
further optimizations are required for a production application, the current performances fits well
with the scope of this research.
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Chapter 7: Future Directions and Conclusions

The conceptualization and assessment of the RoQ system presents several significant
implications for videogame development and Al integration whilst also highlighting several new
ways for future research and development.

7.1 Implications

The successful deployment of LLM-driven content generation in RoQ has a number of
relevant implications for organizing game development practices. By automating the generation
of narrative elements, character backgrounds, and designs of encounters, our system alleviates
one of the fundamental bottlenecks in game development - content generation. This allows
smaller development teams, in particular, to create games with scope and depth that would
normally require significantly more resources.

Our hybrid methodology illustrates that procedural generation and manual design can
actually complement each other rather than represent competing methodologies. The success of
RoQ indicates that it is important to identify the elements of a game that would benefit most from
procedural methods as opposed to manual design, as this makes development much more
efficient.

The performance metrics of NPC conversations, relating to the average of 1.4 seconds
with reliable output, suggests that generating certain types of content during runtime is possible
within acceptable user experience levels. This creates opportunities for games that can adapt to
player action in an organic manner rather than solely depending on pre-authored instances, and
may heighten replayability and personalization.

By separating content creation from gameplay mechanics with a dedicated service, we
find an effective architectural pattern for embedding resource-intensive Al operations in games.
This approach maintains gameplay performance without sacrificing generative sophistication,
suggesting a similar design might be extended to other Al-enhanced game features.

Our implementation demonstrates the necessity of robust validation systems where
probabilistic systems such as LLMs interact with deterministic game mechanics. The success
rates we saw (100% for most endpoints and 85% in encounters) demonstrate that well thought
out validation and correction systems can bridge the gap between generative Al and gaming
requirements.

7.2 Future Research Directions and possible applications

Future systems could use game player feedback and behavior analysis to modify
generated content over time. As LLMs learn about player preferences and styles of play they
could increasingly create more personalized experiences that change over the course of play
rather than remain static after an initial generation.
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While RoQ has been centered around a text-based generator there is an interesting line of
future research around the ability to integrate multi-modal Al systems that generate visual assets,
music and sound effects alongside the narrative content. These Al systems could alleviate
additional development bottlenecks and lead to an even more consistent procedurally generated
world.

Although our context management method is effective in maintaining narrative continuity
across iterations, a more systematic memory model could accommodate long-term narrative arcs,
character growth, or changes to the state of the world. Using retrieval-augmented generation
techniques could be adjusted to provide LLMs more selective access to pertinent historical
context.

Currently, our implementation also requires a significant computational investment.
Future work in model shrinking, edge deployment, and server-side optimization will improve the
possibilities for these techniques in game platforms with more significant resource constraints,
such as mobile or web-based games.

Although RoQ illustrates the approach primarily in the context of the RPG genre, the
techniques developed could easily extend to other genres of games:

e Adventure games could use dynamic dialogue (like our
RPG) and adaptive puzzle generation.

e Strategy games could use similar techniques to develop and
manage factions, diplomacy systems and mission
generation.

e Simulation games could use LLM assisted PCG to create
more diverse and realistic NPC behaviors and stories.

Educational games could use the system create personalized learning scenarios that adapt to
student knowledge and interests.

7.3 Conclusions

The thesis developed and implemented a framework that solved the main challenge of
probabilistic Al outputs being integrated into deterministic game systems. The use of a separately
established backend service that handles LLMs interactions away from the game client response
which avoids many of the performance challenges in Al integrated games. The system
consistently generates coherent, interconnected game content across multiple domains (world
structure, NPCs, quests, and encounters) while maintaining acceptable performance metrics for
practical application.

The method of validating and correcting LLM outputs developed through the thesis
represents a step forward in Al-assisted content creation. Through multiple layers of validations
and intelligent recovery from errors, our system had an impressive success rate (100% for most
endpoints and 85% for the more complex generation tasks). We believe it is reasonable to
conclude LLMs can be a reliable provider of game content when properly bounded and followed
within a structured framework for validation. The implementation of context management for
NPC conversations addresses one of the most challenging aspects of narrative Al: keeping
coherence and character consistency across several interactions. Our approach, based on
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summarization, can give the appearance of memory and continuity despite the technical
limitations of current language models. With conversation response times averaging 1.4 seconds,
the system delivers a responsive player experience that feels natural and engaging.

Our results have several noteworthy implications for game development practices. To
begin, the client-server architecture pattern outlined in this initiative provides a model for
incorporating heavy Al processes into games while avoiding negative impacts on gameplay
performance. This model can be extended beyond content generation, to different features
enhanced by Al in games. Secondly, the hybrid procedure employing procedural and manual
design elements further illustrates that these methods are complementary instead of alternatives.
By determining which elements of a game benefit most from each method, developers can work
more efficiently and more easily sustain creative production despite limited resources. Last, the
success of runtime NPC conversations suggests that certain types of content can be generated
during gameplay rather than exclusively during development or loading phases. This creates
opportunities for more responsive and adaptive game experiences that evolve based on player
actions.

The RoQ project demonstrates that LLMs can contribute to game development when
integrated through carefully designed systems that bridge the gap between Al capabilities and
game requirements. By separating content creation from gameplay mechanics and establishing
strong validation processes, we've proven that even current language models can reliably generate
coherent and interconnected game content. This hybrid strategy, which combines Al-generated
narrative elements with traditional game systems, represents an exciting direction for the future
of game development. Rather than replacing human creativity, these technologies enhance it,
allowing developers to build richer and more diverse game worlds while honing in on the core
systems and experiences that shape their games. As language models continue to evolve in
capability and efficiency, the approaches we've laid out in this research provide a framework that
can adapt alongside them, unlocking new opportunities for dynamic, responsive, and personalized
gaming experiences.
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AMroon IlveopotikOv Atkotopdtov

ANLOvVO pnTd 0TL, SOPP®VO pe 10 ApOBpo 8 Tov N. 1599/1986 kor Ta apBpa 2,4,6 map. 3 Tov

N. 1256/1982, n mapovca Metantuyoxn Authopotikny Epyocia pe titho:
«Leveraging Large Language Models for Dynamic NPC Interactions in 2D RPGs»

KOO®OG Ko T NMAEKTPOVIKA Opyelo Kol TYyaiol KOOIKES oV avartuyOnkav 1)
TpomomoMOnKav oTo TAAICLO AVTHS TS EPYUCLNS KUl AVOQPEPOVTUL PTOS NECH GTO
KEINEVO 7OV ouvvodgvovy, kor 1 omoio £xer ekmovnOei oto Ipoypoppa
Merantopuokov Xmovddv «Avantoln Ynowkov Hoyviowov ko [Holvpeoik@v
E@appoyov» tov Tppatog Emwkowvovies & Ynowekov tov [oavemotnpiov Avtikig
Moaxkedoviag, vré v emifreyn tov Ap. Mnvd Aacvyévn omoterel amoKAEGTIKG
TPOIOV TTPOGOTIKNG €PYUcios Kor ogv mpoofdrier kGOe popeNg TVELHOTIKA
OKOLOPOTO TPITOV KoL OEV €ivol TPOIOY PEPIKNG 1] OMKNG AVTLYPUPNS, OL TTYEG OE
nov yprnoipomon)dnkav wepropilovrar otic frproypapikés avagopéc kar povov. Ta
onueia 6mov £ym ypnowpomomost 0Eec, Keipevo, apyeia 1M / Kov wnyés GAl@v
OVYYPOPEMV, AVIPEPOVTOL EVOLUKPLTE OTO KEIPEVO PE TNV KOTAAANAN Topamopm)
KOL 1] GYETIKT] avaQopd tepriaufdvetar oto Tupe TOV BA0Ypo@iK®@V avagopay
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TOPOVCAS EPYOCIOS, €€ OLOKAPOL 1] TUNHOTOS OUVTHS, YO EUTOPIKO OKOTO.
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NG €PYAOING Y10 KEPOOGKOTIKO 6KOTO TPEMEL VO ATEVOVVOVTUL TPOS TOV GUYYPUPEQ.
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