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Abstract

Edge processing has emerged as a critical domain in computer vision, driven
by the increasing amounts of data sources, over the traditional cloud comput-
ing architectures. Cloud computing has significant disadvantages in addressing
latency, bandwidth, and security concerns, especially on real time applications.
Edge computing addresses these issues by enabling local data processing, there-
fore reducing latency, bandwidth usage, and preserving privacy. This paradigm
shift empowers advanced computer vision applications such as real-time video
analytics, facial recognition, and augmented reality (AR), driving innovation and
opening new possibilities.

Computer vision aims to bridge the gap between human perception and ma-
chine understanding, yet it faces significant challenges, particularly in handling
large volumes of visual data. Deep learning (DL) approaches such as the Convo-
lutional Neural Networks (CNNs), have been crucial in modeling pixel relations
and recognizing complex patterns. However, the integration of multiple modal-
ities by fusing data from multiple sources is essential for improving accuracy
and robustness. This integration poses significant challenges and requires a so-
phisticated handling and alignment of the diverse data types, especially under
the resource constraints of edge devices.

This dissertation aims to address these challenges by proposing a novel de-
sign methodology for edge processing, leading to an accelerated multimodal
framework tailored for these environments. This framework enables the execu-
tion of complex and in-depth data processing directly at the source, leveraging
novel artificial intelligence (AI) models and optimizations for various applica-
tions, such as abnormal event detection, object recognition, proximity assess-
ment, and facial recognition. These approaches demonstrate significant im-
provements in decision-making capabilities, response times, and overall system
performance, even with the limited resources of embedded systems.

To mitigate the computational overhead of data preprocessing, we have im-

plemented various computational processing designs in hardware, taking ad-



vantage of the parallelism of Field-Programmable Gate Arrays (FPGAs). We in-
troduce a portable VHSIC Hardware Description Language (VHDL) design for
color transformation and Sobel edge detection, further improved using High-
Level Synthesis (HLS) for increased efficiency. We also present an accelerated
noise reduction technique based on image stacking, highlighting the potential
of hardware acceleration for edge processing. Additionally, our research in-
vestigates the fusion of multimodal sensor data, combining information from
various sources such as video, audio, and other sensors. This approach pro-
vides a more comprehensive understanding of the environment, enabling even
more informed decision-making and improved system performance in complex,
real-world scenarios.

The effectiveness of this methodology is demonstrated through an extensive
evaluation on real-world datasets and deployment scenarios in public trans-
portation, emphasizing passenger safety and real-time decision-making. The
results highlight the framework’s versatility and robustness, showcasing its po-
tential to transform diverse applications through the power of edge computing

and multimodal data processing.
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ITeptAndn

H enekepyooia oto éxpo (edge processing) éxet avaderydel wg évog xpiotpnog
TOUENG OTYV LTIOAOYLOTLXY] OPOOY, 0ONYOVUEYN OO TLS VEXVOUEVEG TTOGOTY-
teg dedopévwy amd ovoxevég Internet of Things (IoT), éEumveg xdpepeg xou
oLTOVOUOL CLOTNUOTO. Ol TTOPASOOLOKES APYLTEXTOVLXES VTTOAOYLOLLOD TTOLPOV-
oL&LoVY ONUOYTIXA UELOVEXTNUATO OTYY GVTLUETWTLOYN TOY INTNUATLY xobv-
OTEPNONG, EVPOVLS LWYNG XL OOPAAELOG, LOLWS OToy aTmaLTteltol emeEspyooio
oe mpaypatixd xpovo. H emeEepyaoio oto dxpo avtipetwmilet avtd Tt {n-
TAULOTO, ETULTPETIOVTOG TNV TOTULXY] ETEEEQYATLOL ®OVTA OTYY TNy OdOUEVWY,
UELOVOYTOG ETOL TNY OTTOXELOY], TO EVPOG {WYNG oL EVLOYVOVTOS TNV LOLWTLXO-
. Auti N aA Aoy ovoBobpilet TG eapUOYES LTTOAOYLOTLXYG 6POOTG, OTTWG
N ovaAvom PBIvTEo o TEOYUOTIXO XOEOVO, 1] OVOYVOPELOY] TTPOCWTOL XOL ¥ €-
TOOVENUEYN TTEOYUOTIXOTNTO, OBNYWYTOS TNV XOLVOTOWUIOL XAL OVOLYOVTOG VEEG
SLYOTOTNTEG.

H vrohoyriotixn 6paon atoyedeL vor YEQUEKWOEL TO YATUa LETOED TNg avbpd-
TUYNG oVTIANPNG XAl TNG UNYOVLXNG XATOVONONG, WOTOCO OVTLUETWTLLEL ONUO-
VTXEG TTPOXANOELS, LOLwG oY emeEgpyaoion LEYOAWY GYXWY OTTTIXWY OOOUE-
vov. Ot tpooeyyioets g Babidg Mdabnong (Deep Learning, DL), dtaitepo to
Yvvehxtixéd Nevpwvixd Aixtoo (Convolutional Neural Networks, CNNs), éyovv
%xPLOLLO POAO OTY LOVTEAOTIOINOY TWY OYECEWY TWY ELXOVOCGTOLYELWY XOL GTNY
oVaYVWELoT oVVOETWY TPOTOTTWY. Q0TO00, 1 EVOWUATWOY] TTOALTPOTUXWY OE-
SOULEVWY, TTOL GLYSVLALOVY OTTTLXES TTANPOPOPLES LE AAAOLG TOTTOLG OESOUEVLY,
elvor artapol TN Yiow T BeEATiwon Tng axplBELog xo TNG ATTOTEAEGUATIXROTNTOG.
H evowpdrtwon moAutpominwy dedouévwy TEOoohETel oNUOVTIXES TTPOXANCELG,
OTTWG TNY XOVOYLXOTO(NON TWY OLOPOPETIXWY TUTIWY OESOUEVWLY, TNY YPOVLXN
OLOYETLOY TOUG AAG XOL TNV ETEEEQYOOLOL TOVG LTTO TNV TTEPLOPLOWEVY] VTTOAO-
YLOTLX LoYY TWY CLOXEVWY GTO AXPO.

H mopovoo Statpl3n otoxelel oty avILUETWOTILGY OVTWY TWY TEOXANCEWY
mpoteivovtag pLoe véa pebodoroyior yio Ty emeEegpyaoio oto dxpo, N omoio

KOG 00NYNOE OE EVOL ETILTOYVVOUEVO TTOAVTOPOTILXO TTAGLOLO TTPOGOPULOCILEVO YLOL
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ot Tor TEPLRAAAOVTH. ALTO TO TAALOLO ETULTPETEL TNV EXTEAEOY oVVOETY €-
nieEepyooiog SESOUEVWY XOVTA OTNY TINYY], AELOTTOLLVTOS VEX LOVTEAX TEXVNTNG
YONLOOVYYG XL BEATLOTOTTOLIOELS YLO. SLAPOPES EQPOPUOYES, OTIWGS 1 CULTEQL-
QOPLXY) OVEALGY, O EVTOTILOUOG CUUBAVTWY, 7 AVOYVOPLOY AV TIXELUEVWY, 1] EXTL-
UNOoM EYYOTNTOG XL ] OVOLYVOELOY TTPOCWTIOL. AUTEG oL TpooeYYloelg delyvouy
ONUOVTIXES BEATLWOELG OTLG LXOVOTNTES ANPNG ATTOPATEWY, GTOVG YPOVOLG O-
TIOXPLONG XOL OTN GUYOALXY] aTtOd0GY] TOU GUOTNUATOG, OXOUY XKOL VTG TOUVG
TLEPLOPLOUEVOLG TTOPOLG TWY EVOWUATWUEYWY GUOTNUATWY.

[No voo petwyoovpe Ty LTTOAOYLOTLXY] ETULRAELYOY] TNG TTPOETIEEEPYOOLOG OE-
JOUEVWY, EYOVUE EQAPUOCEL dLAPOPOLS OYESLATOVG eTteEcpyaaiog ae LALXO,
EXUETUAAEVOULEYOL TNV TTOPAANAY emteEepyaoio Twy FPGAs. Tlpoteivovpe évav
QoPNT6 oyedLaopd e T YAWooo Tteptypoprs bAtxob VHSIC (VHSIC Hardware
Description Language, VHDL) ytor TV LETOTOOTH YODUATOG X0 TNV OViYVELON
oxpwy Sobel. Xt ovvéyeLa, TOPOLOLALOVPE ULor BEATLWUEVY] TTOLEOAANXYT Y OT-
otpomotwvtag Lovheon YPnrod Emmédov (High-Level Synthesis, HLS) yio aw-
Enuévn amodotixdtnta. EEgpevvodue emiong plor EMLTAYLUEYY TEYVLXY] LELWONG
BopvPouv Boaotopévn oty oToiBakn exdvwy, ovadetxvdovtag TG SLVATOTNTES
ETULTAYLYONG TOL LALXOV YLa Try emteEgpyaoion ato dxpo. EmimAgoy, n €pevva
nog eEetdlel TOV CLUYXEQPAOUO TOALTPOTUXWY OESOUEVWY OO SLAPOPOLS OL-
obntpeg, ovvdvalovtog TANPOPOPLEG aTtd TOANXTAEG TINYES, OTILS Bivteo, M0
%o aANoLg aLobnTNEes. ALTN M TTPOOCEYYLOT TTOEEXEL ULOL TTLO OAOXANPWUEYT)
xoTavonon tov TEPLRAANOVTOG, aEAVOVTOS TNV oxPiBELa TOL CLOTNUOTOG OF
oVvvbeta, Tpoypotind TEPLPAAAOVTO.

H amoteieopatixdtnto avtig g pebodoroyiog amodeixvietor LEow ULOG
EXTEVOVG AELOAGYNONG OE TTOAYLATIXA GOVOAC GESOUEVMY RO GEVEPLOL OLVATTTU-
Eng oty dNpooLo GLYXOLYWVLO, UE EUPATY] OTNY AOQEAAEL TV ETULRATOY Xou
™ M7 atopdoewy o TEaYUaTLXO Ypovo. To amoteAéopoto TLGTOTOLODY TNV
eVEALElt XOL TNV ATTOTEASOUATLXOTNTO TNG TTPOTELYOUEVYS rebodoroyiog ot a-
YOOELXVOOLY TNY CLVELGPOPE TNG GTOV TOUER TNG ETLTO{VVOUEVTG ETTEEEQYOOLOG

0TO &%PO YPENOLLOTIOLOYTOS TTOALTEOTILXE dEdOUEVQL.
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Extetopévy llepiAndn oto EAANviné

H enekepyooia oto éxpo (edge processing) éxet avaderydel wg évog xpiotpnog
Topéog oTNY LTTOAOYLOTLXY] Gpoom (computer vision), 031YoVLEYY A6 TLG OW-
Eovoueveg moodtnTeg 3eSOUEVWY aTtd oLOoXEVES Atadixtiov Twv Ilpoypdtwy
(Internet of Things, 10T), Tig €EUTTVEG XAUEPES %O TAL LV TOVOUOL GLGTHULOTO.
Ot tapadootaxég oEYLTEXTOVLXES LTIOAOYLOTLXNS VéPOoug (cloud computing) To-
POLOLALOVY ONUOVTIXG LELOVEXTAUXTO OTNY OVTLUETWOTILON TWY (NTNUATOY XO-
Buotépnong, edpovg {Wvng xatl LOLWTIXOTNTOG, LWOlWS dTay amotteitol emeEep-
Yool 08 TEOYLOTLXO X OPOVO.

H emeEepyaoio oto dxpo avtipetwmilel avtd Tor {NTNUOTA, ETLTPETOVTOS
™Y ToTUUXY] ETEEEQYOOION XOVTA OTNY TINYY] TwV OeOUEVWY XOL TNY KTTOCTO-
A wévo tne amopoitntng TAnpoopiag oto vépog (cloud). Q¢ amotéAeoua,
TepLtopiletat M yeMhon tov edpovg LWvrg (bandwidth) xat evioydetar 1 tdLw-
TXOTNTO. TV YENoTWY. H ovyxexpipévy pébodog xpivetol diaitepo YENOLLY
YL EQOPUOYES DTTOAOYLOTLXNG OPOONG TTOV ATTOLTOVY AUEDT] OLTTOXPLOY], OTIWGS V|
ovéAvoY Bivieo o TEOYUOTIXO XOEOVO, X0l TTPOCEPEQPEL PEATLWUEVES ETLOOOELS,
XOUNAGTEPN *BLGTEPNOY], UELWUEVT] PO EVPOVG LWVNG KoL LOLWTLXOTNTO.

Eotialovtog otov Topéa Tng LTTOAOYLOTLXYG 6POOTS, N ETMEEEQYOOLOL TOV LE-
Y&AOL O6Y%0L OeDOUEVWY OTO TOUG OTTTLXOVG OLoONTNPES aTTOTEAEL OoNUAVTLXY
TpdxAnon. Ou mpooeyyioetg g Bobidg pébnorng (Deep Learning, DL) éyouvv
LaltEQ ONUAVTIXG POAO GTY] LOVTEAOTIOINON TWY OYECEWY UETAED TWY ELXOVO-
otouyeiwy (pixels) xot otV avoryvdpLon obBVOeTwY TEOTOTTWY, PEPVovTag ETTO-
VAOTOOY OTLS EQOPUOYES DTTOAOYLOTLXNG OPAONG LEGW TNG OV TOUOTOTTOLNLEYNS
eEXYWYNG XHEOXTNELOTIXWY ME LOLoiTEQ LYNAN axpiBeLor.

Eextvdvtog amod tor OspueAtnIdn ovoTatind Twy obYYEovey Lebddwy Boabidg
pabnore, moapovaotdlovior To ToveAxtixd Nevpwvixd Aixtoo (Convolutional
Neural Networks, CNNs) mov amotedoly Oepélio yro ovvbeteg Tpooeyyioetg
070 TESL0 TNG LTTOAOYLOTLUNG OPUONG, YE&EN OTNY LXOVOTNTA EXpAONoNG LepapyL-
WY OVOTTOHPOOTACEWY OTTO TO TTOPEXOUEVR dedopéva. H ypnon Twy cvveAlxTt-

%x®vy (convolutional) @IATEWY Tt xoOLOTA txovd Yiow EEAYWYY YOEOXTNPELOTIRWY



(feature extraction) amd Tig €txOVEC 0 TOAATAG ETITTES A, ETLTPETOVTOG TNV
ovlyvevon 1600 amAwy, 660 xaL odvbetwy potiBwy. Q¢ amotéAsopa, too CNNs
QTTOTEAOVY TOV oxpoywvlolo Albo oto povtéda Boabidg pabnong mouv edixedo-
VTOL OTNY OVAYVWELOY LOTLBWY, OTNY XATNYOPLOTTOINOY] ELXOVWY, OTNY OVLYVELOY
OVTLXELLEVWY XOL OTNY ONULOLEYIOL VEOL OTITLXOD TTEPLEYOUEVOL.

[Tépa amd too CNNs, mapovatalovtol eniong xow toe Emovoinmtixd Nevpw-
vixé Aixtuar (Recurrent Neural Networks, RNNs), ta omoia éyovy oyediaotel
Yoo v emeEegpyooio axolovbiwy. H apyitextoviny] Toug dtatneel pLtar xpuen
XOTAOTOOY] TTOU OTTOTUTIWVEL TTANPOPOPLES OLTTO TTPONYOVUEVES ELGGS0VG, xobL-
OTWOYTAG T LOOVIXA YLOL EQYACLES TTOV ATTALTOVY TNV XATOVONOY] X POVOOELPWY
(timeseries) xoL LOTOPLXWY TANPOPOPLWY, OTIWS N LOVIEAOTOINOT YAWGOAC, N
oVaYVOELoT ORLALOG %ot v TEOBAsdn xpovooelpwy. TlapdAAnAa, yivetal ava-
@opa xow oc pLo eLdtxn xatnyopio Twv RNNs, to Emovainmtixd Aixtuoo Evpelog
Hpoowptvic Mviung (Long Short-Term Memory, LSTM), to. omtoio éxovv oye-
Stootel yLa vor ovTLLETWTLLOVY TO TPORBANUL TWY EEXPOVILOUEV®Y THPOULETOWY
(vanishing gradients) mov mapotnoeitor ota RNN Sixtoa, Beitidvovrog étot
™y amddoon o poxponpdbeoueg ovoyetioels. TEAog, TapovaLdlovTal xot To
Totodtdototo Tuvehxtind Nevpwvixd Aixtoo (3D Convolutional Neural Net-
works, 3D CNNs), Tt ortoio eexTeivovy Ty évvoLa Tng SLodLdotatyg GLVENENS
OTOVY YPOVLXO TOUEX, EEAYOVTOG X WOOYQOVLXA XHOOXTNELOTLXA OE oxoAovbieg et-
XOVWY TTOL TEQLAAUBAYOLY TOCO TNV YWELXYN SOUN TWY OVTLXELULEVWY, OGO XOL TO
©rotifo xivnomng Tovg. Qg ex TOHTOL, Elvol LAOVLXA YLow TNV avdAvay PlvTeo, xou
LI TEQO OE EQPAPUOYEG OTTWG N AVLYVELOT OPUOTNELOTNTAG XOL 1 VOYVWOLOY]
YXELOOVOULWV.

Me Béon tig mponyolueveg PooLKES OPYLTEXTOVIXES VELPWYIXWY SLXTOWY
TOPOVOLALOVUE TNV EXTIUNON otdorg (pose estimation) wg TEWTN TEYVLXN YLoL
™Y voryvepLon g ovbpdmvng dpaotnpLdtrtag (activity recognition). H exrti-
UNnomn oTdong ovopépeTal oty dtadixaoion TPoadlopLtopol g Héong xor Tov
TPOCAYATOALGUOD OVTLXELUEVWY 1] ovbpOTILVWY LopQwY ot exdveg M Plvteo.
EEXLVOVTOG UE TNV EXTIUNOM 0Tdong o V0 SLaoTdoeLs, avolbovTal ot Uébo-
doL tov Baotlovtal oe ATTAEG TEXVIXEG ETMEEEQPYAOLOG ELXOVAG, OTTWS N AVAAVOY
TEQLYQOUUATWY XOL 1 TUNUOATOTIONON YPWUATOG. AT CLVEYELN, EEETALOVTOL
Tow LovVTEAD TToL Paoilovtol oe TUNUOTA, OTTwS TO LovTEAD Eixoviotixwy Aopwy
(Pictorial Structures), To. 0TtOl0L AVATTAPLGTOVY TO AVOPDTLYO COUOL WE [LLOL GUA-
AoY" otd oLVOEDEPEVLL UEPY. TN ovVEYELa, eEeTdleTton 1 3D extipnon otdorng,
1 omola TPoadLoptlel Ty TPlTN dtdotooy, To Babog, TPooPépovTag TANEOQO-

pleg amopoitnTeg yior EQOEUOYES OTwg N ewxovixy] Tporypotixdtte (Virtual
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Reality, VR) xow n Bropmnovixny] ovéAvon. Mepixd amd tor o yvwotd povtéAa
YL SLodLaoTarty exTiunoy otdong meptAaufdvouy to OpenPose, AlphaPose xouw
SimpleBaseline. IIio ouvyxexpipéva, to OpenPose ypnotpomorei CNNs xot v
évvora Twv Tuyyevixdyy ediwv Mepdyv (Part Affinity Fields, PAFs) yio ty owvi-
YVELOY] XL TNY TAUPOXOAOVONON TTOAADY ATOUWY OE TPOYROTLXO YE6vo. TEéAog,
70 AlphaPose Booiletal oc éva Sounuévo LOVTEAO oL aE)LxS evTOTileL dTO-
WLOL OE [LLOL OXMVY] XOL OTYN OLVEYELX EXTLULA TLG OTAOELG TOVG EEXWPELOTA, EVE TO
SimpleBaseline amoteAel ptow amAodotepn TEOGEYYLON, Y ENOLULOTIOLOYTOS BobLd
veELPWILXA dixTua Yiow vou avooduioet tor 2D onuelo-kAeLdLé Tov evtomilovtol
oc ewodveg o 3D ywpo.

31N oLVEYELR, avaADETOL TO TIEDLO TN avaryvepLorg Spaotnolotrrog (activ-
ity recognition). H avoryvedpton Spoaotnoldtnrog TeptAoakBAaver Ty ovoryvepLon
XOL TV XOTNYOPLOTTOLNOY] EVEQYELWY Y] CUUTEQLPOPWY TIOV ATELXOVI{OVTOL OF
ewoveg xon Bivteo. To avTioTOLXO XEPAAOLO TTEQLYPAWEL TNV EEEALEN TNG ovar-
YVOELONG 3P0 TNELOTNTOG, OO TS TPWTES Hebddovg mov PBaoilovtay oe yeL-
QOTTOLNTOL YOPOXTNELOTIXE, OTIwGg 0 aAyOptbuog Metaoynuoatiopnod KApoxwtd
Avarnoiwtwy Xopoxtnototixoy (Scale-Invariant Feature Transform, SIFT) xow
o aiydpibuog Iotoypoppdtwy Koatevbuvdpevwy Kiioewy (Histogram of Ori-
ented Gradients, HOG), éwg Tt abyypovar povtého Bobidg pébnong, émwg to
CNNs, too RNNs o too 3D CNNs. Ilopovaotalovtor cuyreXpLLEVO LOVTEADL YLO
NV OVOYYOELOY 3PO0TNELOTNTOGS, OIS Tor LuveAtxTixd Totodiaotota Aixtuo
(Convolutional 3D Networks, C3D), ta dixtvor Xpovixey Tunudtwy (Temporal
Segment Networks, TSNs), ta dixtva Xpovixrg Metatémiong Movddog (Tem-
poral Shift Module, TSM), ta ixtua SlowFast, xafhg xor ta povtéda “Expand,
Excite, Extend, Depthwise Separable 3D Convolutions” (X3D) xow “Mobile Video
Networks” (MoViNets). Kd&be povtélo mopovotdlet Lovadixéc xouvoTouieg xol
BeAtidoelg o oY€om KE TLE THPUSOOLOXES TTPOCEYYLOELG.

Extéc améd to mopamdve media, divetal €upoon xal oto TEdLo NG aviyvev-
ong avuxelnévwy (object detection), T0 0TOLO ETULTPETEL GTOVG VTTOAOYLOTES VO
ovaryvwpLllovy xal vor evToTi{ovy oVTLXELUEVO OE OTTTLXA OEOUEVO. LTO TTOLOOL-
TV TAaLOLO, YiveTon avo@opd oty eEEALEN TNG avixVeELONG AVTIXELULEVWLY, OTTO
TG TPWTEG LebAdoug Tov Baotllovtay o YELPOTTOINTO YOPAXTNOLOTIXA EWG TO
oVyypova povtéAa Babidg pabnone, omwg to ZoveAuxtinéd Nevpwvixd Alxtuo
mov Baoilovton oty Ieproyn (Region-Based Convolutional Neural Networks,
R-CNNs) xow tor povtéda “You Only Look Once” (YOLO) xow Aviyveutég evig
Ytodiov (Single-Shot Detectors, SSDs).

TéAog, To emOPEVO TESLO TTOL OVAAVETOL ELVOLL 1 OWVarYVWPLoT] TtpoawTou (face
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recognition), pe éupoon oty yxeton CNNs yio v expddnon xow ty eEoywym
yapoxtnototxwy. Iopovotdlovton ol Baoixég pebodoroyieg yiow Ty avaryvooL-
OM TPOOWTOL, OTTWG oL aAyopLbpot “Viola-Jones”, ot pébodot mov PBaoilovtol o
YEWUETOLXA YAQOXTNELOTLUA XL OL TTPOOEYYLoELS oL BacilovTol oTNY EUPAVL-
omn Tov TTPoowTov. EmimAéov, eEetalovtor onpovtixd Lovtéda Pabidg pabnong
YLOL TNV OVOYVWDPLOY] TTROOWTOL, OTtwe Tow Siamese vevpwvixd dixtua (Siamese
Neural Networks, SNNs), to “DeepFace” xot to “FaceNet”. To SNNs atoteAoby
pto xAdom apyrtextovixey CNN mov yopoxtnpilovton amd ta didvp.o (siamese)
LTOJIXTLA TOLG, Tar OTToler potpalovtor B xol Tapouétpovs. To DeepFace
xow to FaceNet, to omolor avarttoynxoy amd tig etanpieg Facebook xow Google
oVTLOTOLY O, ONUELWOOY ONUOYTLXY TTPO0S0 GTNY OXPIBELO TNG AVXYVHPLOYG TTPO-
GWTTOV.

H amoteAeopoatindtTro Twy topamave pebddwy elvor ppnxto cLVIESEUE-
yn 1600 PE TNY TOGOHTNTO, OO0 XAL UE TNY TOLOTNTU TwY JESOUEVLY EXTTOLOED-
ong, aAAG xar e T dtabéatun vLTOAOYLOTLXY LoYD YL TNV ETEEEQYOOLOL TOVG.
Xty mopovota Stdoxtoptxy] StatpLfy) mpoteiveton pta véo peboroyior yior Ty
BeAtiwon g axpiBelag xot NG ATOTEAECUATIXOTNTAS TWY TEOAVUPEQDHEVTWY
TPOOEYYLOEWY UE TNV EVOWUATWOY, ToALTPOoTXWY (multimodal) dedopévwy. O
ovyxepoopdg (fusion) TOALTPOTLXWDY dedouévwy OTtwg oTtTxd, dedopévo Bé-
Bovg, TavopouLrd KoL PATURTOYPXPNUATO YOV BEATLHOVOLY TNV oxpifBetor xou
TNV ATTOTEASOUOTIXOTYTO TWY UELOVOUEVWY LEBOdwY. T topddelypa, évog
oLYOLOGWOG dedouévwy amd atabntnpeg MNyov, Babovg xot TEVOPOLXWDY %o-
UEPWY UTTOPEL VO TTPOGQEPEL YLD TTLO OAOXANOWUEYT ELXOVOL TOL TEPLBAAAOYTOS
XWEoL oe avtibeon pe T YENON LOVO eVOS TUTTOL JESOUEVWY, ETILTPETOVTOG
gtoL xaL mo axplBeic xow okLléomioteg amopdoels. H emeEgpyaoio moAvTpO-
TUXWY OESOUEVWY UTTOPEL Vo eMoLoTonbel oe éva eVPL PACUOL EQOUOLOYWY,
OO CUOTNUOT OVTOULATNG OONYNONG, KEYOL XUL O EQOPWIOYES TTOOOXOAOV-
Onone vyelog xow aoporeiog, 6TOL N CLYBLOGTIXY OVEALGY] BEGOUEVLY OTTO
SLAPOPOLG TOTTOVS TINYWY ELVAL ONUOVTLXY YLow TNY eEaywYY BEATLIOTWY oLUTE-
POOUATWY. QOTO0O0, 1 EVOWUATMWGY] TTOALTPOTUXWY OEGOUEVWY ETILPEPEL ETTLONG
XOL ONUOVTLXES TTPOXANCELG, OTIWGS 1] XOVOYLXOTIOLNOY] TWY SLOPOPETLXWY TOTWY
OEO0UEVWY, 1] YPOVLXT] CLUOYETLON TOVG OAAG XAl 1] ETMEEEQYOOGLOL TOVG LTTO TNV TTE-
OLOPLOUEVT] LTTOAOYLOTLXY] LOYY TWY CUOXEVWY GTA AXPO TOL OLXTVOVL, OL OTTOLEG
OLotBETOLY TTEPLOPLLEVOVG TTOPOLG OE OYEDT] LE TOL XEVTPLXO. CUOTNLATO ETEEEQ-
YOoloGg, YEYOVOS TOL OTTALTEL ATTOSOTLXA LOVTEAX %Ol OAYOPLOUOLG TEXYNTNG
vonuootvrg (Artificial Intelligence, Al).

H dtdaxtopLun StatpLf] 0TOXEVEL OTNY AVTLUETWTLOY TWY TTROAVOPEPHEVTLWY

viil



TPOXAOEWY, TtpoTEIVOVTaG LLo VEao pebodohoyio eneEepyaaiog ato dxpo (edge
processing), n ortoia 037 ynoe ot oYediaoy xoL TNY LAOTOINGN VG ETTLTALYO-
pevou (accelerated) toAvTEOTLXOV TTAGLaiov (framework), etdixd TEOCHEL.OCU.E-
VO o€ TEPLBAANOVTO XOUNATIG DTTOAOYLOTLXYG LoyVOoG. To Tpotelvduevo TAaloLo
ETUTPETEL TNV EXTEAEOT, oVVOETYg emeEepyaoiag dedouévwy xoVTd 0TV TTINYY,
OELOTTOLOVTOG VEO LOVTEAX TEXVNTYG YONUOGUYTGS xo BEATLOTOTOLNOELS YLoL OLL-
(POPES EPAPUOYEG, OTIWGS 1] GUUTIEPLPOPLXY] VAAVGY], O EVTOTILOUOG CLULBAVTWY, 7
OVOYVWOPLON OYTIXELUEVWY, 1] EXTIUNON EYYOTNTOS XOL 1] AVOYVWELOY] TTPOGKTTOV,
oL omoieg TaPOLOLALOLY ONUOVTIXES BEATLWOELS TN AP ATTOPACEWY, GTOVG
XOEOVOULS oTTOXELOTG, x00WC xoL GTN GLYOALXY] ATTO30GY] TOL GUGTNLOTOG, KXOWY]
%Ol VTTO TOVG TLEPLOPLOUEYOLS TTOPOVES TWY EVOWULATWUEVWY CLUCTNLATWY.

Lot TOV TTEPLOPLOLG TOL LTTOAOYLOTLXOL XOGTOVG TG TPoETEEEpYOTiog (pre-
processing) twv dedopévwy oTig edge cLOXEVES, eoTLdoOUE TOOO OTNY ETLTA-
yuvon Tov LAxoU (hardware), 660 xat oty BeATLOTOTOINGY] TOL AOYLOWLXOD
(software). Apyixd, eEetdoope Ty ETLTAYLYOT LALXOV, XENOLLOTTOLOVTOS TIAC-
xéteg Tuoatorywy Emttémia Mpoypappatilopevwy Iy (Field-Programmable
Gate Arrays, FPGAs) yto tnv vAoToinom aAyopiBuwy TpoereEepyaoiog etxdvog,
OTTWG LETATPOT] YOWUATOS XOL AVIYVEVDY OXULWV.

H mpdytn vAomoinon meptypdpetor os YAwooo meplypoprs vAtxod VHSIC
(VHSIC Hardware Description Language, VHDL) oty TAat@dpua Altera DE2-
115 FPGA. ZvyxexpLpéva, oyxediaoaue €vo obotnuo eteEgpyaaiog etxdvog Tov
EOTLALEL OTNY UETOTOOTN XOWUOATOS XOL GTNY owvlyvevon oxuwy Sobel. H ypw-
LOLTLXY] LETOTPOTTY] O XAlpoxor Tov YxpL axoAovbel Tic mpodiaypaée 1TU-R
BT.709, eved n aviyvevon oaxpwy xenollomolel TUPNVEG aviyVELOYG 0PLLOVTLWY
%O XOTOXOPLPWY XALOEWY PooLopévoug atov teAeat) Sobel. To cbotnua ev-
owpotwvetor 010 FPGA péow evdg soft CPU NIOS II, to omolo emixolvwvel
op@idpopo xévovtog YeNon Tov TEwToxoAlov USB yior Ty aAAnAemtidpoon pe
TOL TLEPLPEPELOXA ETLEEEQYUOLOG ELUXOVOG. ZOVVEYXLOOUE KAVOVTOS YOO TNG ZOV-
Bcomg oc YPnAé Eninedo (High Level Synthesis, HLS) oty mAotpdppa Xilinx
Pyng-7Z1, wote va aELOAOYNOGOLUE TOL TTASOVEXTNHUOTO. KO UELOVEXTHUOTOL TWV
ovo pebodoroyiwy, Tov oyxedtoopod o VHDL xow tng pebodoroyior YPnrod
Emmédou Lvvbeorg (High-Level Synthesis, HLS). ITto ouyxexptpéva, 1 bAOTOL-
non HLS mpooépepe taydtepn dnuiovpyior TowTotiTwy xol avdmtuly, akLo-
TOLWYTOG TO TTAdloLo Pyng xon Tl eUXOALEG NG YAWOOOS TEOYQOUUOTLOULOD
Python. O oyediaoudc yioo avixvevon oaxpwy pe odbvbeon vPpnrod emtmédon me-
pthapféver téoospa otddio: (1) Metatpomi Tng eLoG30L og XALAXS TOL YXEL

(AXIS2GrayArray), (2) E@opupoyf teheot] Sobel pe aryéptbpo Non-Max sup-
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pression yto BeAtiwon axpifetog, (3) Kwdixomoinon ypwuotos RGB oe 32-bit
axéporo (GrayArray2AXIS) yio ex@éptwon voloytouwy ard Ty CPU oto PL,
xot (4) Awpepic DMA (AXI4-Stream) yior BEATLOTOTTOLNULEYY] LETOPOPE. SESOpE-
vov. H obyxpton twy dbo vrortorioewy (VHDL xat HLS) €é3etEe 6t n pnébodog
HLS métuye xoAdTEEPN aetd3007 %0l ATTOTEAECUATIXOTNTO, EVE TOLTON POV O
TTAOTTOINOE ONUOYTIXA TNV SLOSLUUOLO. VATTTUEYG, 6O OTNY TTPO-LAOTIOLNUEVY]
LTOGTAPLEY Bootxy AeLTOLEYLHY LALXOL (TT.y. TEWTOx0A 0 AXI4).

[Tépa amd Ty mpoemeEepyooia, mTapovatdlovtor eEeAyuévol ahydpLbuot
TEYVTNG YONULOOVVYG, ELOLXA BEATLOTOTTOLNLEVOL YLOL TTOAVTOOTILXY] ETEEEQYOTLOL
oto axpo. Ou mpooeyyioelg mov Tapovatdlovtotl aElomolody dedopéva amd
TOMOATAEG TTNYES atabntowy, pe eotiaoy oty avoyvwpLon dpaoTneLoTNToC,
OVTLXELLEVWY, TTPOCWTIOL XOL MYNTLXWDY CNULATDY.

EEXLVOVTOG UE TNY AVOYVWPLOY] SPATTNELOTNTOG LE TNV THELVOUTNOY TWY OTA-
OEWY GWUKTOC, OVOTITOGOOVUE Lol SLadixooio Tecodpwy atodimy: (1) awiyvev-
o onuelwy - xAetdLdy Tov avbpWTvou oopatog o xdbe xapé, (2) Tapoaxo-
AoUONoY oxeAETOD 08 TOMATAG %apé, (3) eEaywY XOPAXTNOLOTIXGY oTtd T
onueia - xAetdLé xar (4) TaEvéunon g otdong ovdpatog pe LSTM. H eEaywyn
OLQAXTNPELOTLIXWY TTEPLAOUPAVEL TN XPNoM €vOS xLUXALXOD buffer yiow v awob1-
XEVON TWV TPOYLWY OXEAETOV oL £Qopuoletal v pébodog Avarvorng Koptwy
Sovtotwowyy (Principal Component Analysis, PCA) yia ™) peiwon g Sidoto-
ONG TWV YOPAXTNELOTLXWY, artd 314 oc 50, BeAtidvovtoag Ty axpifBeio xot TNy
TOYOTNTO. TOL [LOVTEAOL.

2TN CLYEYELR, TTOLPOLGLALOVUE TNV OVATITUEYN eVOg XwEoypovixod AuToxw-
duxoronty (Spatiotemporal Autoencoder, SAE), o omoiog exmondebetal o %o~
VOVLXA OECOUEVO KOl OVLYVEVEL UM QULGLOAOYLXE YEYOVOTO Baot{Opevog otny
OTTOXALON OTTO TOL TTPOTLTIAL TWV OESOUEVWY exTtaidevors. H apyttextovixy] Tov
LOVTEAOL TLEQLAOUPBAVEL €Vl XWELKO AV TOXWOLXOTTOLNTY YL TNV ExU&ONoY YwotL-
%WV SOUWY XOL EVOL Y POVLXO XWOLXOTIOLNTY] - TTOXWILXOTTOLYTY YLOL TNV EXUAOT-
oN XEOVXWY TEOTOTWY. [t Ty exTaldevon TOL LOVTEAOL, XENOLULOTTOLOOVTOL
%x0p€ ot Bivteo pe SLoopeTixd Prpoto TopaAeiewy.

EEetdleton emiong n vAOTOINOY EVOC TOVOPOULXOD GUGTHULOTOG AVIYVEVONG
OVTLXELLEVWY, UE XATEAAANAQ ToTtobeTnueEveg xbpepeg fisheye. H apyitextovt-
xf Tov ovoThuortog TeEPLAoBévet tpiow otadio: (1) dixtvo backbone yior Ty
eEarywyn yopoxtneLotixtdy, (2) dixtvo FPN yior v evioyvomn Ty yopoxTtnot-
oTxwy xot (3) dixtvo aviyvevong Yoo ™Y TEOBAEDY TWY TEPLYPOULULATWY XOL
NG TTEPLOTPOPNG TWY OVTIXELUEVWY. XTNy pebodoroyia Tapovotdletor plor véa

TEYVLXN OVLYVELOYNG TEQLYPOUUATWY UE TTPOBASYN TEQLOTPOPNG, YLOL TNY OLYTL-



UETWTILOY NG ToPaALOPPwaons Twy fisheye poxwy. EmimAdoy, ypnotlpomoteitor
woe ouvéptnon anoictog (loss function) ov Aopfdvel LTOPN TNV (AlpLoxa TWY
OVTLXELLEVWY, BEATLOVOVTOG TNV oxplPBela Tng avixvevorg oe ewxdveg fisheye.

270 TedL0 TNG AVAYVWPELONG TTPOOWTOL, ToPOoLOLALeToL 1 pebodoroyion evig
LOYVEOD CLOTAUOTOS YENOLUOTTOLOVTOS dldvpor dixTuor Siamese xoL TNV OEYL-
Textovx] ArcFace. To obotnua owtd vToloYilel opoldTTEG PETOED (evY®Y
EUOVWY, YPNOLUOTIOLOYTOS EVO EXTIOLIEVUEVO SIXTUO CLVEALXTIXWY YELPWVWY
(CNN) yroe v eEaywyn yopaxtnpLtotixoy xat éva tpdoeto module (xCos) yio
TOV VTTOAOYLOKO OUOLOTNTOG LETOED TWY XOETWY XopaxtnoloTtixwy. H evow-
LATWoN Unyovtopob tpocoyhc (attention mechanism) Bonbd oty avtlpeTdmL-
0N TWV TPOXANTEWY TTOV TTPOXVTTTOVY OTO EUTTOOLN, OTTWG OL LATOLXES LOLOKES
TPOCWTIOV, ETILTPETOVTOG TNV OXELPBN aVOryveELOT ATOUWY axXOUo X0 0T TO
TPOOWTO TOLG ELVOLL LEPLKWG XOAVLUEVO.

Téhog, mepLypdpetor xor v pebodoroyion evdg ovoTNULOTOG TaELVOUNONG M-
YOV, UE OTOYO TNV OVIYVELOY U1 QUGLOAOYLXWY YEYOVOTWY GE MYNTLXE Oed0-
peéver. o TNV avTLUETOTILOY TWY TTPOXANOEWY TToL oyeTilovTal pe To H6puvfo,
yonorpomoteitor povtédo DenseNet-121, to omolo exmtardedeton o dedopéva e
dropopetixég avaroyieg onpatobopuPixod Adyou (Signal-to-Noise Ratio, SNR).
H avBextixdtnro xaw ) txavdtnta YeEVIXELog Tov (LOVTEAOL 0ELOAOYOVVTOL OF
TOOYUATLXA OEGOUEVH, ATTODELXVYVOVTOS TNV ATTOTEAECUATIXOTNTA TOV OTNY O~
VIXVELON UM PLGLOAOYLXWY YEYOVOTWY OE TOLXIAO OXOLOTLXA TTEPLPBAAANOVTOL.

2NV OLYEYELD, OLVETAL ELPUTTY TNV APYLTEXTOVLXY] TOU TTANLOLOL YLOL TNV
emteEepyaoio oto &xpo. H apyrtextovinn mepthopPével éva emtinedo apoaipe-
ong LAxob (Hardware Abstraction Layer, HAL) yio tqv Stoyeipton TOAATAGY
aLoOnTRpwY, xoBg xaL unyoviopwolg dtepyaataxng entxovwviag (Inter-Process
Communication, IPC) yia v avtodiayy dedopévwy. H yphon etxovixddyv ov-
oxevwy PBivteo péow vil2loopback ot M EQOEUOYN UNYOVLIOUWY GLYYEOVLGULOV
OcO0UEVWY OTO SLOPOPETLXES TINYES EEXTPAALLOLY TNV AELOTTLOTY AsLtTOLEYIO
TOL TTACLGLOV OE TTEOYUOTLXO Y POVO.

H mpotewvdpevn pebodoroyia Tov 0dMynoe atny dnutovpyict TOL TOEATEVW
TAcLolov OlELOAOYEITOL OE TTEOXTLXY] EQOELOYY] TOL OE PETO LOLLXNG LLETOLPO-
pdc xar ouyxexpLuéva oto avtévop.o oyfuoto (Autonomous Vehicles, AVs). H
ETLAOYY] TWY VTOVOUWY OXNUATWY PBooiletol ot amattTtixés ouvbxes Act-
TOLPYLOG TOVG XOL TOVG EVEQYELAXOVS TLEPLOPLOULOVG, OL OTTOLOL GLYASOLY LE T
rebodoroyio tng emekepyaoiog ato axpo. Ta oLTOVOUO OYNUATOL OTTOLTOLY
MY ATOPACEWY %KoL GUEDY], ATTOXPLOYN O TEAYUATIXO XPOVO, XATL TTOV UTTO-

PEL YO TTPOGQEPEL 1 ATIOXEVTPWUEVY] LOYLTEXTOVLXY XL 1] ETMEEEQYOOLO YOUNANG
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xofvotépnong oto axpo. H evepyeionn amddoon tng eneEepyaoiag 0To dxpo
OUUTIANPWVYEL LOOVLXE T ASLTOLEYIX TWY AVTOVOULY OYNUATWY UE UTTOTOPLX,
UELOVOYTOG TLG OVAYXEG ETILXOLVWVING XOL ETTEXTELVOVTIAG TNY OUTOVOULOL TOVG.
EmnAéoy, evioydetor 1 tdtwtxotnTa, xabwg dev petadidovton svalobnro de-
SOpEVOL EXTHG TOL OYNULOLTOG.

Ov Baowxég avnovyieg Twy emPatwy o aLTOVOUO OYNULOTO TTEPLACUBAVOLY
™y Pouyoroyxy duagopio AoYw EMAeLdng avbpwTiyng emtiBAedng Tov dnuLovp-
Yel @oBouvg mov oyetifovtol e TNV aoPAAELX EVTOS NG xoumivag. Ot pébodot
X0l OL TTPOOEYYLOELS LOG EQOPUOCTNXOY LEGE TOL TTOAVTPOTILXOD TTAOLGLOL YLOL
TNV OVIYYELON XOL TNY OTTOXELOY] OE OLAPOPX TTEPLOTATIXA OOQPAAELOS, HAVO-
VTOG XONoN TEONYUEVWY alabntiowy mtapaxolodbnone. Emimpdobeta, mapov-
OLALOVTaL OTTOTEAECUATOL XOL LEAETEG YLOL TYV OUVELGQOPA TNG TTPOTELVOUEYYG
pnebodoroyiog oe TEOYUOTIXA TEQLRAANOVTO XOL OEVAQLO, OTTWG YLOL TNV KO-
TOPETONON EMLPATWY, TNV aviyvevon emtbéocwy xot cvpfayvtwy xabwg xot Ty
gyxopy evnuépwon. EmimAéoy, eketdleton 1 amodoTixdTnTal TOL TEOTELVOUE-
YOU CUOTHUATOS UE O TOVG TTEPLOPLOUEVOLS DTTOAOYLOTLXOVE TTOPOVS KL TNV
XOTAVEAWOY eVEQYELOS. 'TO TTPOTELVOUEVO TTOALTPOTILXO COOTNUOL OVLYVEVLOYG
OYEOLAOTNAE YLOL YO AELTOVPYEL OE TEOYUOTIXO XOPOVO EVTOSC TWV TEPLOPLOUWY
EVOG EVOWUATWUEYOV CLUOTNULOTOG, OLaaPaALlovTag TNy Gueon aviyvevon xpi-
OLUWY OLUBAVIWY OE AVTOVOUO OYNUOTA UE YOUNAY XOTAVEAWGCY EVEQYELOGC.
[N 1 BeAttotoToinom TG LTTOAOYLOTLXNG ATTOSOTLXOTYTOGS, EQUPUOTTNXOY OLA-
POPEC OTEOTNYLXES. lp®TOY, M CEYLTEXTOVLXY] TOU LUVVEALXTIXOD ALTOUOTOV
Kwdwxorownti (Convolutional AutoEncoder, CAE) ypnotpomotel StoywpLotixéc
ovveALEeLg Bdboug, oL oToleg LELWYVOLY ONUAVTLXA TO LEYEDOG TWY TOHPOUETOWY
oc o0yxpLom UE TG TUTLXEG ouveAiEels. EmmAdoy, ou BeAtiotomotnoetg Stxt)-
oV PE€ow ePYUAElwY O6Ttwe To TensorRT emitpémovy GT0 LOVTEAD Vo AeLTOLEYEL
oarodotixa oty TAateopuo NVIDIA Jetson. Toa melpopatind amoteAéopato
Jeiyvouy OTL M TTPOCEYYLOM LOG ETULTUYYAVEL TorYOTNTO EMEEEQYUTLOG TNG TAEEWS
twv 37 xapé avda devtepdrentto (Frames Per Second, FPS) oto evowpatwpévo
oVvotnua NVIDIA Jetson AGX Xavier. H epoappoyn tov mAatoiov oe mporypo-
X6 TEPLBAANOY UTOXLVOVUEVWY OYNUATWY ATTOTEAEL Utor xplotun doxiuy yio
™Y 0ELOAGYNOY NG ATTOTEAECUATIXOTTOG XOL TNG ATOO0CNS TOL, TTOPEXOVTOG
TOADTULESG TTANPOPOPLES YLOL TLS SUYATOTNTEG XAUL TOVG TEPLOPLOUOVG TOU.

Yvvoiovtog, n Topodoo SLaTELRY] AVTLUETWTLLEL TLS TTPOXATOELS TG TTOAL-
TPOTLUNG eTEEEPYOOLOG 0TO Axpo TpoTeivovtag uta véo pebodoroyio oyedio-
OMG, TTOL OJMYNOE GE EVA ETILTAYVVOUEVO TTOAVTPOTILXO TTAaioto. To TAaiolo aw-

10 emitpémel Ty emekepyacio dedopévwy amevbelog oty YN, aEloToLdyTag
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véo LovtéAa BalLdig nébnomg xal BEATLOTOTTOLNOELS YLOL OLAPOPES EQPAUPULOYES, O-
WG 1] OVAYVWELOT OPUCTNELOTNTAG, O EVTOTILOUOG OVTLXELUEVWY, O VTTOAOYLOUOS
™G EYYUTNTOG LETOED TWV OVTIXELUEVY XOL 1] OVOYYWELOYN TEOCWTWY. ‘Evo
OTtO TO XOPLOL EVPNULOLTO XV THG TNG EPELVAS ELVOLL O GUYXEPUOUOG TTOAVTOOTILRWY
0ed0pEVWY EVTAG TOL TTActalov. Me Tov auvSvaoud TTOAAXTTAWY oabnTNEwWY, -
TUTUYYAVETOL UL TILO OAOXANOWUEVY] XOTAYONGY] TOL TEQLREAAAOVTOG, 03 NYWYTOS
0o ONUOWVTLXES PEATLOELS 0Ty oxplfetar xot Ty aELomioTion TwY oAYoplOpwy
oe ovvbeta ot TpoaypoTixd TEPLBaArovta. H Eupaorn oty emitayvvon Ttov
VALXOU %o oL TEYVLXES BEATLOTOTOLNOYNG LETPLOOY OTTOTEAECULATIXE TO VTO-
AOYLOTIXO XOOTOG, ETULTPETOVTOS TNV EMEEEQYAOLOt GTO BXPO OE TEUYUOTLXO
xoovo. Ta svpuotar aLTNG NG SLATELPRNG EXOVY ONUAVTLXES ETUTTWOELS YLO TO
UEAAOY TNG TEXVNTNG YONUOOUYTNG Xal Tng emeEgpyaoiog oto dxpo. H moAvTpo-
XY ETMEEEQYUTLOL OE EVOWUATWUEVES OLOXEVES DETeL TIg BAOELS YLaL Lol VEOL
YEVLE EELTTVWY CLOTNUATWY TTOL ELVOLL LXOVE VO AELTOVPYOVY UTOVOULOL KOl VO

TPOCaPLOLovTaL o SLVOULXA TtEPLBAAAOYTOL.
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Introduction

Edge processing has become a critical domain in the field of computer vision,
due to the exponential growth of data generated by Internet of Things (IoT)
devices [1], smart cameras [2], and autonomous systems [3]. Traditional cloud
computing architectures are often unsuitable for real time applications due to la-
tency, bandwidth, and security concerns, particularly when real-time processing
is essential [4]. Edge computing mitigates these issues by enabling data to be
processed locally or near the source, therefore reducing latency and bandwidth
usage [5], and enhancing the speed and efficiency of computer vision appli-
cations [6]. Furthermore, edge processing improves data security and privacy
by eliminating the transmission of sensitive information, which is crucial for
compliance with regulations [7]. This shift not only addresses the limitations of
cloud-centric models but also empowers advanced computer vision applications
like real-time video analytics, facial recognition, and augmented reality (AR),
driving innovation and opening new possibilities in various computer vision
domains.

The field of computer vision bridges the gap between human perception
and machine understanding and aims to empower computers with the ability
to “see” and interpret visual information. This progress comes with significant
challenges, especially in handling large amounts of data that are required to

represent visual inputs. Those inputs, such as images and videos, are comprised



of millions of pixels which represent unique details across color channels. The
processing of such pixels requires complex and resource-demanding approaches,
especially when targeting real-time applications. To mitigate this processing
complexity, deep learning (DL) approaches have been introduced to model those
pixel relations by training on large datasets. Among the most popular DL
approaches, Convolutional Neural Networks (CNNs) are able learn hierarchical
representations of visual data. This enables them to recognize complex patterns,
classify images, detect objects, and even generate new visual content [8].

However, the advancements in computer vision, extend in different types of
visual data. All these types of data (depth maps, thermal, audio spectograms),
which refer to the same environment, form the concept of multimodal data [9].
The integration of multimodal data processing by employing the fusion of multi-
ple sources of data has become essential for improving accuracy and robustness
in computer vision tasks [10]. Algorithms can achieve a more comprehensive
understanding of the environment by leveraging multiple data sources, leading
to more accurate and contextually aware applications [11]. A multimodal ap-
proach not only increases the performance of individual models but also enables
new applications and innovations that were previously unattainable with single-
modal data. As edge computing continues to evolve, its ability to process and
fuse multiple modalities locally will be crucial for advancing the state-of-the-art
in computer vision and beyond.

Despite its advantages, multimodal approaches pose a significant practical
challenge due to the need to handle and align diverse data types [12]. Each
modality may have different characteristics, resolution and temporal alignments,
making the integration complex. For instance, the synchronization of depth
maps and audio spectrograms require precise temporal alignment and robust
data fusion techniques to ensure coherent and meaningful outputs. Moreover,
the resource constraints of embedded devices, which are often used in edge
computing environments, add another layer of complexity. These devices must
process large volumes of diverse data in real-time while operating within limited
power, memory, and computational resources. As edge computing continues to
evolve, developing efficient algorithms and architectures capable of handling and
integrating multimodal data on resource-constrained devices will be crucial for
advancing the state-of-the-art in computer vision and beyond.

In this dissertation, we present the results of our research that resulted in
the development of a multimodal edge computing framework. This framework

combines the strengths of hardware acceleration [13] for preprocessing and han-



dling the diverse data types of a multimodal environment with state-of-the-art
accelerated models for various computer vision tasks, including action recog-
nition, object detection, facial identification, and sound event detection. Our
approach utilizes specialized hardware components, such as Graphic Processing
Units (GPUs) and Field-Programmable Gate Array (FPGAs), to perform effi-
cient data preprocessing and integration, ensuring that the computational cost
is minimized on resource-constrained edge devices. Additionally, we integrate
advanced DL models optimized for real-time performance, capable of delivering
high accuracy and robustness across different modalities. By addressing both
the preprocessing and computational challenges, our framework demonstrates
significant improvements in speed, efficiency, and accuracy, shaping the way for
enhanced edge computing applications in computer vision. The outcome of this
research highlight the potential for deploying sophisticated multimodal process-
ing techniques in edge environments, contributing to the ongoing advancement
of intelligent and responsive computer vision systems.

The effectiveness and applicability of our methodology are demonstrated
through detailed evaluation on real-world datasets and deployment scenarios
in public transportation. Our method provides a solid foundation for ensuring
passenger safety and real-time decision-making using sophisticated Al algo-
rithms. The results underscore the versatility and robustness of our framework,
showcasing its potential to transform diverse applications through the power of

edge computing and multimodal data processing.

1.1 Research Gaps and Challenges

Addressing technical challenges requires a holistic methodology that combines
advancements in algorithmic design, hardware optimization, and system ar-
chitecture. While significant progress has been made in each of these areas, a
critical need for continued innovation remains in order to develop solutions that
can seamlessly integrate and process multimodal data on resource-constrained
edge devices. This innovation must not only focus on enhancing the raw com-
putational power and efficiency of these systems, but also on creating more
sophisticated models and algorithms capable of handling the inherent complex-
ities of multimodal data. Additionally, practical considerations such as security,
privacy, and scalability must be thoroughly examined to ensure that these ad-

vanced systems can be effectively deployed and maintained in real-world en-
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vironments. In the following sections, we will delve deeper into the specific
research gaps and challenges within these domains, highlighting the key areas
that require further exploration and development to fully harness the potential

of edge computing in computer vision applications.

1.1.1 Data Integration and Alignment

One of the primary technical challenges is the efficient integration and synchro-
nization of multimodal data [14]. Given the diversity of data types, such as
RGB images, depth maps, and audio spectrograms, achieving precise temporal
alignhment and robust data fusion remains a complex task [15]. Each modality
presents unique characteristics and varying resolutions, complicating the process
of standardizing them to produce coherent and meaningful outputs. This chal-
lenge is significant in real-time applications where any latency or misalignment

can significantly impact performance and accuracy.

1.1.2 Resource Constraints

In addition to data integration issues, the resource constraints in edge devices
pose a significant barrier [16]. Edge devices often operate within strict limita-
tions on power, memory, and computational resources. Developing algorithms
and architectures that can efficiently process large volumes of diverse data under
these constraints is crucial. This requires innovative approaches to optimize both
software and hardware components, ensuring that high-performance computing
can be achieved without exceeding the limited capacities of edge devices. More-
over, the rapid evolution of DL models introduces further challenges. While
these models significantly enhance the capabilities of computer vision systems,
they also demand substantial computational power and memory [17]. Train-
ing and deploying these models on resource-constrained edge devices require
efficient model optimization techniques, such as model pruning, quantization,
and the use of specialized hardware accelerators like GPUs and FPGAs. Ensur-
ing that these optimized models maintain high accuracy and robustness across

different modalities is essential for their practical deployment.



1.1.3 Real-World Applications

Finally, real-world deployment scenarios add another challenging factor to these
challenges. Implementing sophisticated edge computing frameworks in diverse
environments, such as public transportation systems, involves overcoming the
practical obstacles related to scalability, maintenance, and real-time decision-
making. Ensuring the reliability and adaptability of these systems in dynamic

and often unpredictable conditions is critical for their success.

1.2 Objectives and Contributions

The research gaps and challenges in edge processing for computer vision are
broad and complex. Addressing these issues requires a continuous effort to
develop innovative solutions that optimize data integration, computational ef-
ficiency, security, and real-world applicability. By tackling these challenges,
the field can move closer to realizing the full potential of edge computing in
enhancing computer vision applications.

This dissertation aims to address the aforementioned challenges by propos-
ing a novel methodology that resulted in an accelerated multimodal framework
tailored for edge computing environments. The key contributions of this re-

search are:

¢ Multimodal Al Algorithms: The core of the framework employs sophis-
ticated Al algorithms, designed to effectively process and interpret mul-
timodal data. To enhance the integration and synchronization of diverse
data types, advanced fusion techniques were examined by utilizing lateral
connections and other innovative methods. This dissertation designs and
optimizes a spectrum of cutting-edge Al techniques implemented for edge

deployment and computational offloading, including:

— Video Abnormal Event Detection: Several novel approaches for
video abnormal event detection are presented, including pose clas-
sification, spatiotemporal autoencoders for anomaly detection and a
hybrid convolutional autoencoder with center-weighted loss function

suitable for overhead panoramic event detection.



— Panoramic Object Detection: An overhead object detection system
tailored for passenger counting in autonomous vehicles (AVs) is de-
veloped, leveraging a novel rotation-aware bounding box regression

technique to handle the challenges of barrel distortion.

— Obstructed Facial Recognition: A robust facial identification system,
based on Siamese neural networks (SNNs) and the ArcFace [18] archi-
tecture, is implemented. This system incorporates an attention mech-
anism and specialized preprocessing techniques to effectively handle

occlusions caused by face accessories.

¢ Computational Offloading: Recognizing the computational demands of
multimodal data processing, the research exploits specialized hardware ac-
celerators based on FPGAs. Three distinct implementations are presented:
(1) a portable VHDL design for color transformation and Sobel edge de-
tection on the Altera DE2-115, (2) an optimized HLS-based design on the
Xilinx Pynqg-Z71, allowing for direct comparison of VHDL and HLS method-
ologies. This offered valuable insights into the trade-offs between low-level
control and high-level productivity in FPGA design. Furthermore, (3) an
accelerated noise reduction design based on an image stacking technique,
implemented using HLS in Xilinx Pynqg-7Z1 that further demonstrating the
potential of hardware acceleration for edge preprocessing. Finally, we
also designed Some parts of the algorithms to be mapped efficiently and

accelerated in CUDA cores.

* Real-World Validation: Demonstration of the framework’s effectiveness
and applicability through rigorous evaluation on real-world datasets and
deployment scenarios in the public transportation sector. Both multimodal
Al algorithms and computational offloading were extensively utilized at
edge devices, showing the success and the practical aspects of our research

methodology.

1.3 Document Structure

This dissertation is structured to provide a comprehensive exploration of the
proposed framework and its applications. Following this introduction, the re-

mainder of this thesis is organized as follows:



Chapter 2 provides a holistic review of the underlying algorithms of the
proposed framework. It focuses into the theoretical foundations and prac-
tical considerations of these algorithms, emphasizing their relevance and

applicability to the problem domain.

Chapter 3 discusses the implementation and evaluation of our research
and its framework implementation, highlighting its effectiveness through

various use-case scenarios.

In Chapter 4, the implementation of the proposed accelerated multimodal
framework is presented in the field of security, safety and trust in Au-

tonomous Vehicles (AVs).

In Chapter 5, a comprehensive discussion is offered along with future
directions following this thesis. This chapter also presents the thesis’s
conclusion, offering a summary of its findings and contributions to the
field.

Finally, in Appendix A — Publications, all the published research during
this dissertation are presented, classified into three main categories, Jour-

nal, Conferences and Book Chapters.



Background

The field of Computer Vision plays a crucial role in the advancement of various
technologies, particularly in pose estimation, activity recognition, facial recogni-
tion and object detection. Pose estimation involves the identification and track-
ing of human body positions [19], while activity recognition extends this by
interpreting complex human actions, contributing significantly to areas, such as
surveillance and healthcare monitoring [20]. Facial recognition on the other
hand, is crucial in security and personal identification systems and relies heav-
ily on computer vision to accurately identify and verify individuals based on
their facial features [21]. Finally, object detection, a fundamental technique for
countless artificial intelligence (AI)-driven applications, such as AVs and robotic
vision, utilizes computer vision techniques to identify and locate various objects
within an image [22]. The integration of computer vision in these areas not
only enhances the efficiency and accuracy of systems, but also opens up new

possibilities for technological innovation and human-machine synergy.

2.1 Backbone Neural Network Architectures

In this section, we will explore some of the most basic models and algorithms for

multiple DL tasks, each with its unique approach in handling the complexities



of spatial and temporal data. Some of the most commonly used models include
CNNs, Recurrent Neural Networks (RNNs), Long Short-Term Memory networks
(LSTM) and 3D CNNs.

2.1.1 Convolutional Neural Networks

A convolutional neural network, often called CNN or ConvNet, is a special-
ized type of artificial neural network designed to process data with grid-like
structures like 2D images. It is the foundation of the algorithms inspired by
the structure and function of the brain. The core building block of a CNN is
the convolutional layer which applies filters to the input data, a process called
convolution. These filters are learned during the training process, adjusting
themselves to best capture the essential characteristics of the data. After the
convolutional layers, CNNs often include pooling layers. These layers reduce
the spatial size of the data, keeping only the most salient information while
discarding unnecessary details. This not only makes the computation more effi-
cient but also helps prevent overfitting, where the model learns to memorize the
training data too closely. The final layers of a CNN are typically fully connected
layers, similar to those in regular neural networks. These layers combine the
extracted features from the previous layers and make the final decisions, such
as classifying an image into different categories. A well-known example of a
CNN is the Visual Geometry Group (VGG) networks [23] (Figure 2.1).

Thanks to their ability to automatically learn hierarchical features from raw
data, CNNs have revolutionized the field of computer vision, achieving state-
of-the-art performance in tasks like image recognition, object detection, and
image segmentation. They have also found applications in other areas, including

natural language processing and time series analysis.

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks
specifically designed for processing sequences of data. Unlike traditional feed-
forward neural networks, which assume that inputs and outputs are indepen-
dent of each other, RNNs leverage the sequential nature of data by maintaining

a hidden state that captures information about previous inputs. This unique
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Figure 2.1: This diagram illustrates the VGG-16 CNN architecture [24]. The network consists of
13 convolutional layers (Conv-1 to Conv-5) followed by 3 fully connected layers (FC-6 to FC-8).
The convolutional layers use varying kernel sizes and depth to extract features from input images
of size 224 x 224 x 64, reducing their spatial dimensions while increasing the number of channels.
The fully connected layers transform the extracted features into a 1000-dimensional vector for
classification. The dimensions of the feature maps at each stage are indicated, highlighting the
progression from the input layer to the output layer.

ability allows RNNs to exhibit temporal dynamic behavior, making them par-
ticularly well-suited for tasks where context or historical information is crucial,
such as language modeling, speech recognition, and time-series forecasting. At
their basic architecture, RNNs are comprised of three layers, namely an input
layer, a hidden layer and an output layer. The input layer simply receivers the
input sequence at each time step ¢. The hidden layer maintains the hidden state,
which is updated based on the current input and the previous hidden state and

can be expressed as follows [25]:

hy = (T b ™ + Ty by ) (2.1)

where hl € R" is a hidden state in layer [ at timestep ¢, f € {o,tanh} is a non-
linear activation function (like tanh or ReLU), and T,,,, : R® — R™ is an affine
transform.

Finally, the output layer generates the output, which could be a classification
or a regression depending on the task [26], and can be accordingly represented

as follows:

}/t = g(WhyHt + by) (2-2)

where ¢ is typically a softmax function for classification tasks, W, is the

weight matrix for hidden-to-output connections, and b, is the bias.
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Figure 2.2: This diagram depicts the architecture of a LSTM cell, which is a type of RNN
used to capture long-term dependencies in sequential data. The LSTM cell consists of several
components that regulate the flow of information through the cell: input gate, forget gate, and
output gate, which are represented by sigmoid functions. Additionally, there is a tanh activation
function that creates new candidate values.

Despite their advantages, RNNs face significant challenges, primarily due to
issues such as vanishing and exploding gradients during training. These prob-
lems hinder the network’s ability to learn long-term dependencies effectively.
To mitigate these issues, advanced variants of RNNs, such as Long Short-Term
Memory (LSTM) networks and Gated Recurrent Units (GRUs) [27], have been
developed. These architectures introduce gating mechanisms that control the
flow of information, allowing the network to better manage long-range depen-

dencies and improve performance on complex sequence-based tasks.

2.1.3 Long Short-Term Memory Networks

LSTM networks, a special kind of RNNs have the ability to process and make
predictions based on time-series data. This was the basis upon which LSTMs
were designed, as traditional RNNs struggle with the vanishing gradient prob-
lem, where the contribution of information decays geometrically over time, mak-
ing it challenging to connect long-range temporal dependencies within the data.
The core innovation of LSTMs is the cell state and its associated gating mecha-
nisms, which regulate the flow of information. Specifically, LSTMs employ three
gates—input, forget, and output gates—to control the addition and removal of

information from the cell state (Figure 2.2). This allows LSTMs to preserve
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Figure 2.3: This diagram illustrates the architecture of a CNN. It begins with the input layer,
where raw data are fed into the network. The data then pass through convolutional layers
that extract feature volumes, followed by subsampling (pooling) layers that reduce the spatial
dimensions of the feature maps. Finally, the feature volumes are passed through fully connected
layers to perform classification or regression tasks. The diagram highlights the transition from
feature extraction to decision making within the network.

relevant information while discarding irrelevant data, thereby maintaining a
balance between short-term and long-term memory. As a result, LSTMs have
become the backbone of many advanced applications in natural language pro-
cessing, speech recognition, and time-series forecasting, where understanding

context over time is crucial.

2.1.4 3D Convolutional Neural Networks

3D CNNs have been introduced as a powerful tool in computer vision, especially
for activity recognition tasks and volumetric image analysis. In traditional 2D
CNNs, convolutions are performed on 2D spatial data, which renders them sub-
optimal for video data as they fail to capture the temporal dynamics. 3D CNNs
extend the concept of convolution to three dimensions, allowing the network
to learn features across both space (width and height of the frame) and time
(sequential frames) by processing a video clip as a 3D volume, where the third
dimension is time [28]. This is crucial for activity recognition, where under-
standing the sequence of movements is as important as recognizing the spatial
features.

Regarding their architecture, 3D CNNs are comprised of five distinct layers,
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namely the input layer, the convolutional layers, the pooling layers, the fully
connected layers and the output layer (Figure 2.3). The input layer refers to
the input data in the network that are typically a sequence of video frames, rep-
resenting a short clip, where each frame is a 2D image, and the sequence forms
a 3D volume. The next layers are the convolutional layers that are responsible
for performing 3D convolution, by capturing both spatial and temporal features.
This way, the network learns filters that respond to specific types of movement
or visual patterns over time. Similar to 2D CNNs, 3D CNNs also use pooling
layers to reduce the spatial dimensions (width and height) and the temporal
dimension, which helps in reducing the computational complexity and overfit-
ting. Finally, after several convolutional and pooling layers, the network uses
fully connected layers to perform high-level reasoning based on the learned fea-
tures and, similarly to 2D CNNs, the final layer is typically a softmax layer for

classification tasks, where each neuron corresponds to a potential activity class.

2.2 Pose Estimation

Pose estimation is the process of determining the position and orientation of
objects or humans within images or videos [29]. This capability is not just
a significant technological achievement, but also a key component in a wide
array of applications, ranging from interactive gaming and AR to healthcare
and autonomous driving. At its core, pose estimation is about understanding
the spatial configuration of objects or subjects in visual data, a task that has
evolved significantly with advances in technology and methodology [30].

Pose estimation first appeared when the fundamental need to interpret and
understand visual data began. Early efforts in pose estimation were primarily
focused on simple geometric models for extracting the position and orientation
of objects in images [31]. These methods were limited in their ability to handle
complex, real-world scenarios.

As computer vision evolved, the field witnessed a significant shift with
the evolution of ML, which introduced more sophisticated, data-driven ap-
proaches [32]. Those approaches introduced part-based models for human
pose estimation, which involved breaking down the human figure into indi-
vidual parts and estimating their positions. These methods provided greater
accuracy, but were still constrained by the computational complexities and the

quality of available data.
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The real transformation in pose estimation, however, came with the integra-
tion of DL. The evolution of CNNs and subsequent DL architectures dramatically
enhanced the ability to interpret complex poses, even in dynamic and unstruc-
tured environments [33]. This progress was accelerated by the availability of
large annotated datasets, such as the Human3.6M dataset for 3D human poses

and significant advances in computational power [34].

2.2.1 Pose Estimation Methodologies

As mentioned above, pose estimation involves determining the spatial configura-
tion of objects or human figures from visual data, with its methodologies having
been significantly evolved over the years, transitioning from traditional geometric
models to advanced DL techniques. However, two are the main methodologies

used in pose estimation tasks, namely 2D and 3D pose estimation:

e 2D Pose Estimation: It involves the detection of parts position, such as
human joints, in a two-dimensional plane. This methodology is ideal in
applications where depth information is secondary or unnecessary. The
initial approaches in 2D pose estimation were grounded in basic image
processing techniques, which included methods like outline analysis and
color segmentation, being relatively simple and limited in their effective-
ness, especially in complex scenes. However, with advancements in ML,
part-based models began to gain ground. One such example is the Pictorial
Structures model [35], which represented the human body as a collection
of interconnected parts. These models utilized probabilistic frameworks
to estimate the pose but were often constrained by high computational

requirements.

¢ 3D Pose Estimation: 3D pose estimation extends the task to three dimen-
sions, providing depth information essential in various applications, from
AR to bio-mechanical analysis. However, transitioning from 2D to 3D
pose estimation introduces additional complexities. While 2D estimation
focuses on x and y coordinates on the image plane, 3D pose estimation
involves determining the z coordinate, which represents the depth. Early
methods of 3D pose estimation relied on multi-camera setups or depth

sensors, such as LIDAR and RGB-D cameras, to obtain depth information.
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2.2.2 Key Algorithms and Models

In this section, an overview of some key algorithms and models that are most
commonly used in pose estimation tasks are presented, including OpenPose [36],
AlphaPose [37] and SimpleBaseline [38] for 3D Human Pose Estimation.

2.2.2.1 OpenPose

OpenPose, a revolutionary technology in the field of computer vision, operates
through a complex pipeline that leverages the power of CNNs. The initial stage
involves feeding an image or video frame into a CNN, which acts as a feature
extractor. This network is trained on datasets of annotated images, learning
to identify patterns and structures that correspond to human body parts. The
extracted features are then passed to a second CNN, known as the Part Affinity
Fields (PAF) network. The PAF network predicts the association between body
parts, essentially creating a map of how different keypoints are connected. This
stage is crucial in determining the pose of multiple individuals within a single
image or frame, as it allows the algorithm to differentiate between limbs that
belong to different people.

OpenPose is designed to identify and track multiple human figures in real
time, providing keypoint coordinates for body parts, including limbs and fa-
cial features. The system is built upon CNNs and introduces the concept of
PAFs, a novel approach to solve the problem of part-to-person association in
multi-person pose estimation [19]. As a result, OpenPose consists of two main
components, where the first one is used to predict confidence maps for body
part locations, while the second part is used to predict PAF's that are essential
for part association.

More specifically, confidence maps are generated to represent the likelihood
of a body part’s presence at each pixel. For each person k, a confidence map S,
is generated. If z(;x) € R? is the ground truth position of body part j for person

k in the image, the value at location p € R? in S{j ) is defined as follows [19]:

g

2
x D — X,
S - (=231 2

where ¢ is a parameter that controls the spread of the peak.

The next step in the OpenPose pipeline is the bipartite matching algorithm.
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Figure 2.4: The concept of keypoints in pose estimation, showing the key joints and their
connections in human figures performing different poses. Each silhouette represents a person,
with keypoints marked at critical joints such as the head, shoulders, elbows, wrists, hips, knees,
and ankles. The lines connecting these keypoints form a skeletal structure, highlighting the
relationships between different parts of the body.

This sophisticated process takes the PAF predictions and associates them with
the keypoint detections from the first CNN. By evaluating the confidence scores
of each connection, the algorithm constructs a skeletal representation of each
person in the image, effectively “connecting the dots” between the detected key-
points (Figure 2.4). The final stage of the OpenPose pipeline involves temporal
filtering. This step is particularly relevant when dealing with video input, as
it helps to smooth out any jittery or inconsistent pose estimations over time.
By considering the pose information from previous frames, the algorithm can
refine its predictions, leading to more accurate and stable tracking of human
movement.

OpenPose is not limited to a single model but offers a variety of pre-trained
models with varying levels of accuracy and computational complexity. This
flexibility allows users to choose the model that best suits their specific applica-
tion, whether it’s real-time pose estimation on a low-powered device or high-
precision tracking in a controlled environment. The technology is not confined
to the detection of human body parts but has been extended to estimate the
poses of hands, faces, and even feet. This multi-person, multi-part capability
opens up a wide range of possibilities for applications in fields such as sports

analysis, augmented reality (AR), and human-computer interaction (HMD).
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2.2.2.2 AlphaPose

AlphaPose [39] is designed for real-time, multi-person pose estimation. It is well
known for its ability to maintain high accuracy even in challenging scenarios
with multiple individuals and potential occlusions. The model is structured
to first detect individuals in a scene and then estimate their poses separately,
ensuring precision in pose estimation. The core of the AlphaPose algorithm
consists of two primary stages, the human detection stage, where the individual
humans in a given image or video frame are identified, and the pose estimation
stage, where the pose of each detected human is estimated [37].

As mentioned above, AlphaPose begins with a human detection module,
often employing a pre-trained object detection model, such as You Only Look
Once (YOLO) [40] or Faster Region-based CNN (Faster R-CNN) [41]. The object
detection framework is used to identify human bounding boxes within an image
and can be represented as D(I) — {B;}, where [ is the input image and {B;}
is the set of detected human bounding boxes.

Once individual humans are detected, AlphaPose estimates the pose for each
person within the bounding box, firstly, by using a Single Person Pose Estimator
(SPPE) that predicts a set of keypoints representing the human pose for each
bounding box B;. The SPPE function generates heatmaps for each keypoint,
indicating the likelihood of each keypoint’s position. If hi(x,y) represents the
heatmap for keypoint £ at position (z,y), the predicted position of the keypoint
is the one with the highest value in the heatmap.

To handle inaccuracies in human detection and improve pose estimation, Al-
phaPose introduces the Regional Multi-Person Pose Estimation (RMPE) frame-
work [39], which utilizes Spatial Transformer Networks (STNs) [42] to transform
the detected bounding box into a better-fitting one. If T'(B;,0) — B represents
the STN operation, B; is the transformed bounding box, and 6 are the transfor-
mation parameters learned to optimize the fit of the bounding box. To further
refine the bounding box, AlphaPose also uses a Symmetric Spatial Transformer
Network (SSTN) that is designed to be symmetric to ensure that the transfor-
mation is learnable and efficient [39].

Finally, to handle overlapping bounding boxes and keypoints, AlphaPose
implements a parametric pose Non-Maximum Suppression (NMS) mechanism,
which can be represented as NMS({K;}) — { K[}, where {K]} is the set of non-
overlapping keypoints after the NMS operation.
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2.2.2.3 SimpleBaseline for 3D Pose Estimation

SimpleBaseline [43] for 3D human pose estimation represents a shift towards
simplification in the pose estimation domain, proving that high performance can
be achieved without overly complex network architectures. It is a DL model
designed for 3D human pose estimation that was developed in response to the
trend of increasingly complex models in this field, demonstrating that a relatively
uncomplicated architecture can offer high accuracy. The model operates by
upscaling 2D keypoints detected in images to 3D space, leveraging deep neural
networks for this purpose.

The architecture of SimpleBaseline is centered around a standard ResNet
backbone followed by several deconvolutional layers [43]. This structure is sim-
pler compared to other models that use more complex architectures and auxil-
iary branches. The Residual Network (ResNet) [44] backbone in SimpleBaseline
is used for feature extraction and is characterized by its residual connections,
which help in mitigating the vanishing gradient problem in deep networks. A

standard ResNet [44] model is generally represented as:

y=F(z,{W;})+a (2.4)

where y is the output of the residual block, F' is the residual function, z is
the input feature, and {WV;} are the weights.

After feature extraction, the model employs a series of deconvolutional layers
to gradually upsample the feature maps, helping in refining the spatial resolution
for accurate keypoint localization. To perform 2D-to-3D lifting, SimpleBaseline
uses a linear regression model that takes 2D keypoints as input and estimates
their corresponding 3D positions [45]. The model does not directly process
image data for 3D pose estimation. Instead, it relies on an efficient transforma-
tion from 2D to 3D using a transformation equation. If P,p represents the 2D
keypoints and Psp represents the predicted 3D keypoints, the transformation
can be modeled as [39]:

Psp =T (Pop; Wr) (2.5)

Here, T is the transformation function parameterized by weights W, which are
learned during training.
Finally, the training of the SimpleBaseline model is focused on accurately

mapping 2D keypoints to 3D space. The model is trained using a dataset of
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images with corresponding 2D and 3D keypoint annotations. The primary loss
function used in SimpleBaseline is the mean squared error (MSE) between the

predicted 3D keypoints and the ground truth [43], which is calculated by:

2

N
1 i A (i
==Y Hp§5 2 (2.6)
=1

where N is the number of keypoints, ng is the predicted 3D position of the
i-th keypoint, and pyf?, is the ground truth.

2.3 Activity Recognition

Activity recognition involves the identification and classification of actions or
behaviors depicted in images and videos and has gained interest due to its wide
array of applications, from surveillance to healthcare and sports analytics [20].
The task of recognizing activities within visual media is challenging due to the
complexity and variability of human actions and the environments in which
they occur [46].

Activity recognition firstly began with the emergence of motion detection
and has since evolved into the complex task of understanding complex human
behaviors and interactions [47]. Early efforts relied on simple temporal changes
in pixel values to detect movement. However, these approaches lacked the
sophistication to understand the context or type of activity [48].

With the advancement of ML and computer vision, more complex models
were developed that included handcrafted features, such as Scale-Invariant Fea-
ture Transform (SIFT) [49] and Histogram of Oriented Gradients (HOG) [50],
which provided more detailed information about shapes and movements in
videos [51].

However, DL was the real transformative change in activity recognition.
CNNs [52], RNNs [53], and more recently, 3D Convolutional Networks (3D
CNNs) [54] have enabled more accurate and robust activity recognition by learn-

ing feature representations directly from data.
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2.3.1 Activity Recognition Methodologies

Initially, activity recognition primarily relied on extracting and analyzing hand-
crafted features from images or videos to capture relevant information about
motion and appearance, which could then be used to classify different activities.
In this context, two main categories of feature-based methods were established,
namely the optical low method and other handcrafted spatial features meth-
ods, including HOG [50] and SIFT [49]. The first one method, optical flow,
involves calculating the motion between two consecutive frames based on pixel
intensity changes. The optical flow vectors can indicate the direction and speed
of object movement, as presented in the following equation, which are crucial
for recognizing certain activities. In Equation 2.7, V' is the optical flow at pixel
(x,y) at time t, with u, and u, representing the flow in horizontal and vertical

directions, respectively.

V(z,y,t) = (U, uy) (2.7)

However, the evolution of DL brought an evolution in activity recognition,
introducing models that could learn feature representations directly from data,
leading to improved accuracy and generalization over traditional, feature-based
approaches. The key advantage in these approaches is the ability of DL models,
especially CNNs and RNNs, to automatically learn and extract features directly
from large volumes of data. This capability enables the identification of com-
plex and abstract patterns that are crucial to recognizing a wide array of human
activities. DL models excel in handling spatiotemporal data, a critical aspect of
activity recognition. CNNs effectively process spatial information within individ-
ual video frames, by identifying patterns and movements indicative of specific

activities.

2.3.2 Key Algorithms and Models

This section focuses into several state-of-the-art models on the field of activ-
ity recognition in videos, each contributing unique innovations and improve-
ments over traditional approaches. The following methodologies leverage deep
learning techniques to automatically learn and extract meaningful features from

video data, thereby significantly enhancing the accuracy and efficiency of activity
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Figure 2.5: A 3D CNN architecture for human action recognition [55]. This architecture consists
of one hardwired layer, three convolution layers, two subsampling layers, and one full connection
layer.

recognition systems.

2.3.2.1 Convolutional 3D Networks

C3D, or Convolutional 3D networks, are among the fundamental models that
extend the principles of 2D convolution to the temporal domain by applying 3D
convolutions. This model effectively captures spatiotemporal features directly
from the raw video data, making it a foundational approach for many sub-
sequent advancements in video activity recognition. The C3D model operates
by applying 3D convolutional filters over a sequence of video frames, rather
than treating each frame independently. This enables the model to learn spatial
features within each frame and temporal features across consecutive frames si-
multaneously. Specifically, the 3D convolutional layers are designed to capture
both the spatial structure of objects and their motion patterns over time, provid-
ing a more holistic understanding of the video content. The architecture of C3D
typically involves several layers of 3D convolutions, followed by pooling lay-
ers that reduce the spatial and temporal dimensions while preserving essential
features. By stacking multiple layers, the network can progressively abstract
higher-level spatiotemporal patterns. For example, early layers might detect
simple motion and edges, while deeper layers can recognize complex activities
and interactions (Figure 2.5).

One of the significant advantages of C3D networks is their ability to process
and learn from raw video data without the need for hand-crafted features or ex-

tensive pre-processing. This end-to-end learning capability makes C3D models
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highly adaptable to various video recognition tasks, such as action recognition,
gesture detection, and video classification.

However, C3D networks are computationally intensive due to the high di-
mensionality of 3D convolutions. This has led to the exploration of more ef-
ficient architectures, such as I3D (Inflated 3D ConvNet) and X3D, which aim
to reduce the computational cost while maintaining or improving recognition

performance.

2.3.2.2 Temporal Segment Networks

Temporal Segment Networks (TSNs) [56] introduce a framework that divides
video data into segments, extracting features from each segment and aggregat-
ing them to represent the entire video. This method allows for the efficient
handling of long video sequences, ensuring that temporal dynamics and context
are accurately captured. TSN is effective in various video understanding tasks,
including action recognition and temporal action detection.

TSN operates by breaking down a video into a series of uniformly sampled
segments. For each segment, a frame or a short snippet is selected, and fea-
tures are extracted using convolutional neural networks (CNNs). This process
captures both spatial and short-term temporal features within each segment.
Once the features from all segments are extracted, they are aggregated to form
a comprehensive representation of the entire video. This aggregation can be
performed through various methods, such as average pooling or weighted sum,
to ensure that both global and local temporal information is considered (Fig-
ure 2.6). The segmentation approach of TSN addresses the challenge of long
video sequences by focusing on representative snippets rather than processing
every frame. This significantly reduces computational complexity and memory
requirements, making TSN suitable for real-time applications and large-scale
video datasets. Moreover, by sampling from different parts of the video, TSN
ensures that the model captures diverse temporal dynamics, such as the begin-
ning, middle, and end of an action, providing a more complete understanding
of the activity.

One of the key advantages of TSN is its flexibility in incorporating different
types of CNN architectures for feature extraction. This modularity allows TSN
to leverage the advancements in image recognition models, such as ResNet [44]
and VGG [23], adapting them for video analysis. Additionally, TSN can be
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Figure 2.6: An overview of TSN for human action recognition. The video is divided into
snippets, which are sampled uniformly from the entire video. Each snippet is processed by a
Spatial ConvNet and a Temporal ConvNet to extract spatial and temporal features, respectively.
These features are then aggregated through segmental consensus, which combines the segment-
level predictions into a final prediction.

extended to multi-modal inputs, integrating features from RGB frames, optical
flow, and even audio, to enhance the robustness of video understanding.
Despite its strengths, TSN also has limitations, particularly in capturing long-
range dependencies and fine-grained temporal details. To address these chal-
lenges, researchers have explored hybrid approaches that combine TSN with
recurrent neural networks (RNNs) or attention mechanisms, aiming to enhance

temporal modeling capabilities without sacrificing efficiency.

2.3.2.3 Temporal Shift Module

The Temporal Shift Module (TSM) [57] is designed to enhance the temporal
modeling capability of 2D convolutional networks without significantly increas-
ing computational complexity. TSM shifts a portion of the feature map along
the temporal dimension, enabling the network to capture temporal relationships
effectively. This approach maintains a balance between performance and effi-
ciency, making it suitable for real-time applications. TSM introduces a simple
yet powerful mechanism to incorporate temporal information into 2D CNNs,
which are typically limited to processing spatial information within individual
frames. By shifting part of the feature map along the temporal axis, TSM allows
adjacent frames to share information, thereby capturing motion and temporal
dependencies between consecutive frames. This temporal shift is implemented

in a way that does not require additional parameters or significant computa-
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Figure 2.7: The TSM for video recognition. The video is divided into N segments, from which
frames are sampled for processing. These frames are passed through a Conv2D network to
extract spatial features, resulting in a feature map. The TSM enhances temporal modeling by
shifting a portion of the feature map along the temporal dimension, mixing information across
adjacent frames. The shifted features are combined with the identity mapping to preserve spatial
information, followed by further 2D convolutions.

tional overhead, maintaining the efficiency of standard 2D convolutions.

The TSM architecture is built upon a typical 2D CNN backbone, such as
ResNet [44] or MobileNet [58]. During the feature extraction process, a portion
of the intermediate feature maps is temporally shifted forward and backward.
For example, one-third of the channels are shifted to the previous frame, one-
third to the next frame, and the remaining channels stay in the current frame.
This temporal shift effectively mixes the features across time, enabling the net-
work to model temporal relationships while preserving spatial feature extraction
(Figure 2.7).

One of the key advantages of TSM is its ability to be seamlessly integrated
into existing 2D CNN architectures. This makes it an attractive solution for
enhancing temporal modeling without the need for redesigning the network
architecture or significantly increasing the computational cost. Consequently,
TSM can be applied to a wide range of video analysis tasks, including action
recognition, gesture detection, and video classification, with minimal impact on
inference speed.

Despite its simplicity, TSM is ideal for further research and enhancements.
Researchers have explored combining TSM with other temporal modeling tech-
niques, such as attention mechanisms and recurrent neural networks (RNNs),
to capture more complex temporal dependencies and long-range interactions.
These hybrid approaches aim to build upon the strengths of TSM while ad-

dressing its limitations in modeling extended temporal contexts.
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2.3.2.4 SlowFast Networks

SlowFast Networks [59] have revolutionized video recognition by leveraging
the temporal dynamics of video sequences. This approach utilizes two separate
pathways: a slow pathway that captures semantic information over a longer du-
ration and a fast pathway that focuses on rapid, fine-grained temporal changes.
The knowledge sharing between these pathways allows for a more accurate
and efficient analysis of video content, addressing the need for both tempo-
ral resolution and context. The architecture of SlowFast networks is designed
to simultaneously process video data at different temporal resolutions. The
slow pathway operates at a lower frame rate, providing a detailed and seman-
tically rich representation of the video over an extended period. This pathway
captures essential context and slower-moving objects, ensuring that the model
understands the broader scene and activities. In contrast, the fast pathway pro-
cesses video at a higher frame rate, focusing on capturing quick motions and
fine-grained temporal details that might be lost by the slow pathway.

The interaction between these two pathways is facilitated through lateral con-
nections, allowing the exchange of information and enhancing the overall un-
derstanding of the video. The slow pathway benefits from the high-frequency
temporal details provided by the fast pathway, while the fast pathway gains
contextual information from the slow pathway. This bidirectional flow of in-
formation ensures that the model can accurately capture and integrate both
short-term and long-term temporal dynamics (Figure 2.8).

One of the significant advantages of SlowFast networks is their ability to
balance computational efficiency with high performance. By distributing the
computational load across two pathways operating at different temporal resolu-
tions, the model can achieve a more comprehensive analysis without a substan-
tial increase in complexity. This design makes SlowFast networks particularly
effective for complex video recognition tasks, such as action detection, gesture
recognition, and video classification, where both detailed motion and contextual
understanding are crucial. In addition to their performance benefits, Slow-
Fast networks are also highly adaptable. They can be integrated with different
backbone architectures, such as ResNet [44], and can be extended to incorporate
multi-modal inputs, including RGB frames, optical flow, and even audio signals.
This flexibility allows SlowFast networks to be tailored to specific applications
and data modalities, enhancing their utility across a wide range of video analysis

tasks.
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Figure 2.8: The architecture of SlowFast networks for video recognition. The video frames
are processed through two separate pathways: the slow pathway and the fast pathway. The
slow pathway (top) captures semantic information over a longer duration by processing fewer
frames at a lower frame rate, providing a detailed and contextual understanding of the video.
The fast pathway (bottom) captures rapid, fine-grained temporal changes by processing more
frames at a higher frame rate, focusing on the dynamic aspects of the video. Information from
both pathways is combined to make the final prediction.

Despite their advantages, SlowFast networks do have limitations, particularly
in terms of the increased complexity of managing and synchronizing multiple
pathways. Ongoing research aims to address these challenges by exploring
more efficient ways to implement multi-pathway architectures and improving

the integration of temporal information across different scales.

2.3.2.5 Expand, Excite, Extend, Depthwise Separable 3D Convolutions

X3D models [60], known for their Expand, Excite, Extend, and Depthwise Sep-
arable 3D Convolutions, represent a significant advancement in scaling video
models. These models introduce a scalable approach to building 3D convolu-
tional networks by expanding the network capacity, exciting relevant features,
and extending temporal receptive fields. The use of depthwise separable con-
volutions further enhances efficiency, allowing for deeper and more expressive
models without prohibitive computational costs.

X3D models aim to address the challenges of developing efficient yet power-
ful 3D convolutional networks for video recognition tasks. The key innovation
of X3D lies in its progressive scaling strategy, which systematically increases the

network’s capacity and complexity to balance performance and computational
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Figure 2.9: X3D networks progressively expand a 2D network across the following axes: tem-
poral duration, frame rate, spatial resolution width, bottleneck width, and depth [61]. The input
frames are processed through these expanded dimensions, resulting in a scalable network that
captures detailed spatiotemporal features while maintaining computational efficiency.

efficiency. This is achieved through three main processes: Expand, Excite, and
Extend (Figure 2.9).

Firstly, the “Expand” phase involves increasing the network’s width, depth,
and resolution to enhance its capacity to capture detailed spatiotemporal fea-
tures. By carefully adjusting these dimensions, X3D models can scale from
smaller, more efficient networks to larger, more powerful ones, depending on
the specific requirements of the task and the available computational resources.
This flexibility allows X3D to be tailored for various deployment scenarios, from
mobile devices to high-performance servers.

Secondly, the “Excite” phase focuses on amplifying the most relevant features
within the network. This is achieved using channel-wise attention mechanisms
that dynamically adjust the importance of different feature channels based on the
input video data. By emphasizing the most informative features, X3D models
improve their ability to discriminate between different actions and activities,
leading to higher accuracy in video recognition tasks.

The “Extend” phase involves expanding the temporal receptive fields of the
network to capture long-range dependencies and temporal dynamics more ef-
fectively. By increasing the temporal dimension of the 3D convolutions, X3D
models can analyze longer video sequences and understand complex temporal
relationships. This extension is crucial for tasks that require a deep understand-
ing of temporal context, such as action detection and event recognition.

One of the key components that enable the efficiency of X3D models is the use

of depthwise separable 3D convolutions. This technique decomposes standard
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3D convolutions into separate spatial and temporal convolutions, significantly
reducing the number of parameters and computational operations required. As
a result, X3D models can achieve deeper and more expressive architectures
without incurring prohibitive computational costs, making them suitable for
real-time applications. In addition to their performance benefits, X3D models
are highly adaptable and can be integrated with other advanced techniques, such
as multi-modal inputs and attention mechanisms. This adaptability enhances
their robustness and versatility, enabling them to address a wide range of video
understanding challenges.

Despite their advantages, X3D models also present opportunities for further
optimization, particularly in terms of reducing computational overhead and im-
proving scalability. Ongoing research aims to refine the scaling strategies and
incorporate more sophisticated attention mechanisms to enhance the efficiency

and effectiveness of X3D architectures.

2.3.2.6 Mobile Video Networks

As video processing increasingly moves towards edge devices, MoViNets (Mo-
bile Video Networks) [62] have become critical. These networks are designed
to be highly efficient, with a focus on reducing computational complexity while
maintaining high accuracy. MoViNets achieve this through innovative architec-
tures that balance performance and resource constraints, making real-time video
analysis feasible on portable devices. MoViNets are specifically implemented to
address the unique challenges of mobile and edge computing environments,
where computational resources, power consumption, and latency are critical
constraints. Traditional video recognition models, although highly accurate,
often require substantial computational power and memory, making them un-
suitable for deployment on resource-limited devices. MoViNets overcome these
limitations by employing several key strategies.

Firstly, MoViNets utilize lightweight network architectures that are optimized
for efficiency. This involves designing convolutional layers and other network
components to minimize the number of parameters and computational oper-
ations. Techniques such as depthwise separable convolutions, which separate
spatial and channel-wise operations, significantly reduce the computational load
while preserving the model’s ability to learn complex features.

Secondly, MoViNets incorporate efficient temporal modeling techniques to
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Figure 2.10: The architecture of streaming evaluation for video recognition using causal con-
volutions [62]. The video frames are processed in a streaming manner, with frames being
sampled over time. Each sampled frame undergoes causal convolution (CausalConv), which
ensures that only past and present information is used, preventing future information leakage.
The intermediate feature maps are then pooled using 3D pooling (3D Pool) to reduce dimen-
sionality and aggregate spatial-temporal features. This process continues with new frames, and
the buffered feature maps are combined to form a final decision. The stream buffer stores in-
termediate states to facilitate continuous evaluation, enabling efficient real-time video analysis
and decision-making.

capture motion and temporal dynamics in video data without excessive com-
putational overhead. By strategically sampling frames and using temporal
pooling methods, MoViNets can effectively analyze video sequences with fewer
frames, reducing the amount of data that needs to be processed. This approach
maintains temporal resolution and context while ensuring the model remains
lightweight (Figure 2.10).

Another critical aspect of MoViNets is their ability to adapt to varying levels
of computational resources available on different devices. This adaptability is
achieved through techniques such as model scaling, where the network’s depth,
width, and resolution can be adjusted based on the target device’s capabilities.
For instance, a smaller version of MoViNet might be deployed on a smartphone,
while a more extensive version could be used on a more powerful edge server.
This scalability ensures that MoViNets can deliver optimal performance across
a wide range of hardware configurations.

The design principles of MoViNets have influenced the development of other
efficient neural network architectures for mobile and edge computing. Their
success underscores the importance of optimizing models not just for accuracy

but also for the practical constraints of deployment environments.
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2.4 Facial Recognition

Facial recognition technology has been the center of attention in recent years
due to its applications in various domains such as security, surveillance, au-
thentication, as well as social media [63]. Facial recognition has a long history,
with early attempts dating back to the 1960s, when Woody Bledsoe, Helen Chan
Wolf, and Charles Bisson developed one of the first facial recognition systems,
which used manual feature extraction and geometric measurements to identify
faces in images [64]. However, it was only with the advent of DL that facial
recognition made significant advances.

DL, particularly CNNs, has revolutionized the field of computer vision and,
by extension, facial recognition, due to their ability to automatically learn and
extract intricate features from images [65]. As a result, they are well-suited for
facial recognition tasks. The development of deep neural networks, including
the VGGNet [23], ResNet [44] and InceptionNet [66] has significantly improved
the accuracy and efficiency of facial recognition systems [44].

The facial recognition process begins with capturing a facial image using a
camera. However, since this process can occur under various conditions and
angles, the complexity of the recognition process can be heavily influenced by
it, as well as by the quality, the lighting and the background of the image.
Once an image is captured, the system detects the presence of a face and the
algorithms identify key facial features, mainly the eyes, nose and mouth. After
face detection, the system analyzes the face to extract unique features, which
are distinct aspects of the face that can be used to distinguish one person from
another. These features may include the distance between the eyes, the shape
of the cheekbones and the contour of the lips, among others.

The next step involves faceprint creation, which is a numerical print created
by the identified features from the previous step. Since each face has a unique
faceprint, similar to a fingerprint, this process creates a feature vector that is a
set of numbers that represent these key features. For verification, the faceprint
is compared to a specific faceprint stored in the database to confirm if they
match. In identification, on the other hand, the faceprint is compared against
multiple records to determine the identity among other options. Then, based
on the degree of match, the system decides whether the presented face matches
a stored faceprint, a process typically carried out by ML-based classifiers that

can handle complex decision-making processes.
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In summary, the effectiveness of a facial recognition system depends not only
on the quality of the algorithms and models used, but also on factors such as the
quality of input images, lighting conditions and the presence of occlusions [67].
Additionally, addressing ethical concerns, bias, as well as privacy issues still
remains a significant challenge in the development and deployment of facial

recognition technology [68].

2.4.1 Facial Recognition Methodologies

Facial recognition in images and video streams involves several key method-
ologies that leverage DL and computer vision techniques. Each methodology
addresses different aspects of the process, from detecting and identifying faces
to analyzing and comparing them against known faces.

Before a system can recognize a face, it must first detect its presence in an
image or video frame. This can be accomplished through methods such as the
Viola-Jones algorithm, or DL-based methods. The Viola-Jones algorithm [69] is
one of the earliest and most famous face detection methods that uses Haar-like
features and an integral image concept for rapid feature detection, combined
with a cascade of classifiers for increased accuracy. On the other hand, modern
DL approaches often use CNNs for face detection that can handle more complex
and varied facial representations compared to traditional algorithms.

For feature extraction, there are two main types of approaches, namely the
geometric feature-based and the appearance-based approaches. The geometric
feature-based approaches focus on the geometric properties of facial features,
such as the distance between the eyes, the nose width and the jawline shape,
whereas the appearance-based approaches analyze the appearance and texture
of the face. Techniques including the Local Binary Patterns (LBPs) [70], the
HOGs [50] and other neural network-based feature extraction approaches fall
under this category.

Deep convolutional networks, and especially CNNs, are mainly used for
learning high-level features and representations of faces, since layers in CNNs
automatically and hierarchically learn features from raw pixels to complex facial
attributes. In addition, autoencoders for dimensionality reduction and Gener-
ative Adversarial Networks (GANs) for generating and learning complex facial
distributions are also explored in advanced systems.

As mentioned above, after feature extraction, the system compares the de-
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tected face with known faces using either template matching or ML classifiers.
In simpler systems, facial features are compared with stored templates to find
the best match. However, in more complex systems techniques such as Support
Vector Machines (SVMs), k-Nearest Neighbors (k-NNs), and DL classifiers are

used to classify the facial signature against a database of known faces.

2.4.2 Key Algorithms and Models

Facial recognition tasks leverage a range of algorithms and models, primarily
from the fields of ML and computer vision. These models can be mainly classi-
fied either as traditional algorithms or DL-based models. For traditional algo-
rithms, one of the earliest techniques used for face recognition, Eigenfaces [71]
involves Principal Component Analysis (PCA) to reduce the dimensionality of
the face image data, focusing on the most significant features. An extension of
Eigenfaces is Fisherfaces [72] which use Linear Discriminant Analysis (LDA)
for feature extraction, emphasizing on maximizing the between-class variance
and minimizing the within-class variance. Finally, LBP is another algorithm in
this category that involves summarizing local structures in images by comparing
each pixel with its surrounding pixels and is particularly effective for texture

analysis.

2.4.2.1 Siamese Neural Networks

As described in a previous section (section 2.1.1), a typical CNN architecture
is comprised of several layers, each performing a specific function. However,
in face recognition their working principle is quite different compared to that
described for activity recognition tasks.

Siamese Neural Networks (SNNs) [73] represent a class of CNN neural archi-
tectures characterized by their twin sub-networks that share weights and param-
eters. These subnetworks, often referred to as “twin towers” or “sister networks”,
are designed to process distinct input samples and produce embeddings, which
are compact vector representations capturing the essential characteristics of the
input.

An SNN can be defined as a function that maps a pair of input samples to

a similarity score, parameterized by the shared weights. The subnetworks are
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Figure 2.11: SNN architecture for similarity learning. This network processes two input images,
x1 and xg, through identical convolutional neural networks to generate embeddings f(z1) and
f(z2). These embeddings are compared using a differencing layer that computes the distance
d(z1,72) = ||f(z1) — f(x2)||?>. The distance metric is then used to derive a similarity score,
optimized using loss functions such as Triplet Loss, Contrastive Loss, or Binary Cross Entropy.
The aim is to minimize the distance between similar pairs and maximize the distance between
dissimilar pairs.

typically identical, meaning they have the same architecture and share the same
set of weights during both training and inference (Figure 2.11). The output
of the SNN is a similarity metric, which quantifies the degree of resemblance
between the two input samples. This metric can be based on various distance
or similarity measures, such as Euclidean distance or cosine similarity. The
choice of metric depends on the specific application and the nature of the data
being processed.

Training an SNN involves optimizing the shared weights to minimize a loss
function that encourages the network to produce similar embeddings for similar
inputs and dissimilar embeddings for dissimilar inputs. This is often achieved
through contrastive learning, where the network is presented with pairs of pos-
itive (similar) and negative (dissimilar) samples and trained to maximize the
distance between their embeddings.

The Siamese architecture offers several advantages over traditional neural
networks. Firstly, it is designed to handle pairwise comparisons, making it well-
suited for tasks involving similarity assessment. Secondly, the weight-sharing
mechanism reduces the number of parameters that need to be learned, leading
to faster training and improved generalization. Finally, SNNs can be easily
adapted to different types of input data by modifying the architecture of the
subnetworks.

In conclusion, SNNs provide a powerful and versatile framework for ad-
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dressing a wide range of problems that involve comparing pairs of samples.
Their unique architecture and training methodology enable them to learn dis-
criminative embeddings that capture the underlying relationships between input

samples.

2.4.2.2 DeepFace

DeepFace [65] is a DL facial recognition system developed by Facebook that was
one of the first models to achieve near-human accuracy on the Labeled Faces in
the Wild (LFW) benchmark [74], a standard for measuring the effectiveness of
facial recognition technologies. Its architecture is based on CNNs and consists of
multiple layers, each designed to extract and learn features from facial images.
The key components of the DeepFace architecture include convolutional layers,
responsible for extracting features from the input images; max-pooling layers,
for reducing spatial size of the convolved features; fully connected layers, for
integrating the learned features from the convolutional layers for classification;
and a softmax output layer that is used for categorizing the input face into one
of the known identities.

The algorithm’s process can be broken down into four main steps. First,
during the face alignment stage, DeepFace aligns the faces using a 3D model to
ensure they are centered and properly rotated, which helps mitigate issues re-
lated to pose variations. Next, in the feature extraction and learning phase, Deep-
Face’s convolutional neural network (CNN) extracts features from the aligned
images through convolutional layers. Following this, the pooling layers reduce
the dimensionality of the feature maps. Finally, in the fully connected layers
and classification stage, the network combines the features to classify the face
accurately.

DeepFace also introduced unique aspects for facial recognition including 3D
face alignment, which is the use of a 3D model for face alignment so as to sig-
nificantly improve performance by normalizing the pose variations in the input
images. In addition, Deepface also employs a very deep architecture, which
allows it to learn complex and high-level facial features. Finally, the model’s
raining on a vast dataset enables it to achieve high generalization, making it

robust to a wide range of faces and expressions.
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2.4.2.3 FaceNet

FaceNet [75] is a facial recognition system developed by Google that, unlike tra-
ditional facial recognition systems that focused on classifying faces or veritying
a match, aims to directly learn a mapping from face images to a compact Eu-
clidean space. In this space, distances directly correspond to a measure of face
similarity. This approach represented a significant shift in how facial recognition
was approached and has had a profound impact on the field.

FaceNet’s architecture, similar to DeepFace’s architecture, is also built upon
deep CNNs. While it can utilize different CNN architectures, the inception model
has been commonly used due to its efficiency and performance. The key com-
ponents of the FaceNet system include convolutional layers to extract features
from the input images; batch normalization, which is used for normalizing the
inputs to each layer, thus speeding up the training; pooling layers to reduce the
spatial dimensions of the feature maps; fully connected layers that contribute to
creating the embedding representation; and L2 normalization, which is applied
to the embedding layer to constrain the embedding on a hypersphere.

The algorithm’s pipeline involves several key steps. First, in the feature
extraction phase, FaceNet uses a deep convolutional neural network (CNN) to
extract features from facial images. The convolutional layers in the network
are responsible for this extraction. During training, FaceNet employs a triplet
loss function designed to ensure that an anchor image (A) of a person’s face is
closer to all other positive (P) images of the same person than to any negative

(N) images of any other person. The triplet loss is mathematically formulated

as follows:
N
L= [1f ) = F@D)3 = 1) = FaD)l; + o]
=1
where || - || is the L2 norm, « is the margin enforced between positive and

negative pairs, and f(z) represents the embedding of an image z. Finally, the
network generates an embedding, which is a vector representation of the face in
a high-dimensional space. This embedding is designed such that the Euclidean
distance between two embeddings directly corresponds to facial similarity.

In summary, FaceNet represents a major advance in facial recognition tech-
nology, introducing a powerful, embedding-based approach. Its use of the
triplet loss function and focus on generating discriminative embeddings have set

new standards in the field, while the model’s architecture and training method-
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ology have inspired subsequent research and development.

2.5 Object Detection

Object detection is a field of computer vision that has seen remarkable advance-
ments in the last few decades. This technology, which allows computers to
identify and locate objects in visual data, plays a pivotal role in a variety of
applications, from AVs and security systems to medical imaging and content
analysis.

Early object detection methods were largely based on simple pattern recogni-
tion and feature detection techniques. These included the use of edge detection
filters, region-based methods such as blob analysis and feature-based methods
using keypoints and descriptors, including SIFT and HOG [76]. These tech-
niques were effective to a certain extent, but had limitations in terms of accuracy
and robustness, especially in complex visual scenes. However, the introduction
of ML brought significant improvements. Techniques such as SVMs [77] were
employed for object classification, using features extracted from images [51].
While these methods showed better performance than their predecessors, they
still struggled with challenges like variations in object scale, pose, lighting, and
background clutter.

The real breakthrough in object detection came with the development of
CNNs [78] and their ability to learn hierarchical feature representations directly
from data, revolutionized the field. The first major success of CNNs in object de-
tection was demonstrated by the Region-based CNN (R-CNN) model [79],which,
along with its more efficient successors, Fast R-CNN and Faster R-CNN, used
a two-stage approach where the first stage generated potential object bounding
boxes, and the second stage classified these boxes using CNN features.

However, two-stage detectors, while accurate, were often slow, making them
unsuitable for real-time applications. This led to the development of single-
stage detectors, such as YOLO [40] and SSD [80], which simplified the detection
pipeline by combining the two stages into a single network pass, drastically
improving the speed of detection. YOLO, in particular, became famous for its

ability to perform object detection in real-time with reasonable accuracy.
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2.5.1 Early Object Detection Methodologies

The early methodologies in object detection, prior to the DL era, were fun-
damentally different from the current approaches, as they relied heavily on
hand-engineered features and traditional ML-based algorithms.

There are four main categories of featured-based approaches, namely the
SIFT, the HOG, the sliding window approach and the classifiers. The SIFT ap-
proach was developed by David Lowe in 1999 [81] to extract distinctive invariant
features from images that are robust to changes in scale, noise, illumination and
minor variations in viewpoint. This approach begins by identifying key loca-
tions in scale space by looking for stable features across scales and accurately
localizing the keypoints and eliminating those with low contrast or poorly lo-
calized along an edge. Finally, the next steps include assigning orientation to
each keypoint to achieve invariance to image rotation, as well as generating a
unique fingerprint for each keypoint based on local image gradients.

The HOG approach was introduced by Dalal and Triggs [51] in 2005 and
focuses on the structure or shape of an object. It works especially well for
detecting pedestrians in images, a classic problem in computer vision. More
specifically, this algorithm begins by dividing the image into small, connected
regions known as cells and for each cell, it computes a histogram of gradient
directions or edge orientations for the pixels within the cell. After the histograms
are produced, they need to be normalized to enhance invariance to changes in
illumination and contrast. Finally, the HOG feature descriptors are formed by
concatenating these normalized histograms.

Finally, the sliding window approach involves systematically sliding a win-
dow of a fixed size over the image and, for each window position, features (like
HOG or SIFT) are extracted and fed into a classifier (e.g., SVM) to determine

whether the window contains an object of interest.

2.5.2 Deep Learning Evolution in Object Detection

As mentioned above, DL algorithms have revolutionized the field of object de-
tection, offering substantial improvements in accuracy and efficiency over tra-
ditional image processing methods. In contrast to the aforementioned hand-

engineered feature-based approaches, DL algorithms have the ability to learn
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complex patterns and generalize across diverse datasets. Some of the most com-
mon DL algorithms for object detection include Region-Based Convolutional
Neural Networks (R-CNNs), You Only Look Once (YOLO) and Single-Shot De-
tectors (SSDs).

2.5.2.1 Region-Based Convolutional Neural Network

R-CNNs marked a significant shift in object detection methodologies, introducing
DL into a domain traditionally dominated by hand-engineered feature extraction
and classifiers. They were developed by Ross Girshick et al. in 2014 [79] as a
way of integrating high-capacity CNNs with region proposal methods to localize
and classify objects within an image. Unlike prior methods that used sliding
windows, R-CNNs focus on a selective search to propose potential object regions,
significantly reducing the computational burden.

There are four core principles of a R-CNN model, the selective search for re-
gion proposals; the feature extraction with CNNs; the classification with SVMs;
and the bounding box regression. The first step in a R-CNN model is to iden-
tify potential object regions, known as region proposals, using a selective search
algorithm. This algorithm groups pixels based on various features like texture,
color and size, to hypothesize about object locations. The selective search algo-
rithm is a heuristic method combining the strengths of both exhaustive search
and segmentation.

During the feature extraction process, each proposed region is then warped
or cropped and resized to a fixed size, typically 227 x 227 pixels, to be fed into
a CNN, which acts as a feature extractor, converting each region into a high-
dimensional feature vector. After the conversion of each region into a feature
vector, the extracted features are classified using class-specific linear SVMs rather
than using the CNN’s softmax layer for classification. Each SVM is trained to
recognize a specific class. Finally, for each class, a linear regression model is
trained to predict the bounding box coordinates, refining the localization of each
object.

R-CNNs have been established in object detection and they inspired a se-
ries of innovations, leading to more sophisticated architectures, such as the Fast
R-CNN [82], which proposes a region of interest polling layer to share convo-
lutional features among region proposals to improve both speed and memory

efficiency, and the Faster R-CNN [41], which integrates the region proposal net-
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work into the architecture, making the process of generating region proposals

part of the neural network, further improving efficiency and speed.

2.5.2.2 You Only Look Once

YOLO is another approach to object detection, developed by Joseph Redmon et
al. [40], that differs significantly from the region proposal-based methods like the
R-CNNs. YOLO redefines object detection as a single regression problem, straight
from image pixels to bounding box coordinates and class probabilities. YOLO’s
primary objective lies in its speed and efficiency, as it processes the entire image
at once (hence the name “You Only Look Once”), making it significantly faster
than methods that process multiple regions separately. This unified approach
is especially well-suited for real-time applications.

The architecture of the YOLO framework is mainly classified into three layers,
the single convolutional network, the confidence scores and the class probabili-
ties. Regarding the single convolutional network, YOLO employs a single CNN
to predict multiple bounding boxes and class probabilities for those boxes. The
network divides the input image into an SxS grid and, for each grid cell, the
network predicts B bounding boxes and confidence scores for those boxes, as
follows [40]:

Confidence = Pr(Object) x IOUgr“etjl1 (2.8)

truth

where Pr(Object) denotes the probability of an object in the box and IOU .4

is the Intersection Over Union (I0U) between the predicted box and the ground
truth.

Each bounding box consists of 5 predictions: z, y, w, h, and confidence. The
(x,y) coordinates represent the center of the box relative to the bounds of the
grid cell. Width (w) and height (h) are predicted relative to the whole image.

The confidence score reflects the model’s certainty that the box contains an
object and how accurate it thinks the box is that it predicts. If no object exists
in that cell, the confidence scores should be zero. Lastly, each grid cell predicts
C' conditional class probabilities, one per class for the classes being detected, as
follows [40]:

C = classConditionalProbabilities x Confidence (2.9
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In summary, YOLO’s innovative approach to object detection demonstrates
the power of rethinking traditional methodologies. It balances speed and accu-
racy, making it a foundational model in real-time object detection. Its evolution

and the continued development of its variants underscore its significant impact
on the field.

2.5.2.3 Single Shot Detector

Single Shot Detectors (SSDs) are prominent algorithms in the field of object
detection, known for their speed and efficiency. Developed by Liu et al. [80],
SSDs are designed to outperform similar models like YOLO by handling multiple
aspect ratios and offering better accuracy, particularly for small objects. Just
like YOLO, SSD is also a one-stage detector that performs object detection in
a single shot, thus simplifying the detection process by eliminating the need
for a separate region proposal network, striking a balance between speed and
accuracy.

From an architectural point of view, the SSD framework consists of four main
layers. First, the base network starts with a standard CNN, such as VGG16 [23],
truncated before its classification layers. This base network is responsible for
extracting feature maps from the input image. Next, additional convolutional
layers are added to the base network, progressively decreasing in size, enabling
the model to detect objects at multiple scales. These added layers, along with
some high-level layers from the base network, are utilized to predict the presence
of objects. Finally, SSD predicts bounding boxes with different aspect ratios and
scales for each location in the feature maps.

Regarding the overall loss function of the SSD, this is a weighted sum of the
localization loss (loc) and the confidence loss (conf), as follows [80]:

1
N (Leont(, ¢) + aLyoc(, 1, 9)) (2.10)

where N is the number of matched default boxes, and the localization loss

L(I7C7l’g) =

is the Smooth L1 loss [82] between the predicted box (1) and the ground truth
box (g) parameters.

In conclusion, SSDs represent a significant advancement in object detection,
particularly in the context of real-time applications. Their innovative approach
to handling multiple scales and aspect ratios in a single-shot framework set new
benchmarks in the field.
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2.6 Chapter Summary

This chapter explored key concepts in computer vision, focusing on pose estima-
tion, activity recognition, facial recognition, and object detection. The integration
of deep learning (DL) techniques has significantly enhanced these areas.
Regarding pose estimation, DL techniques have significantly improved ac-
curacy and efficiency, moving from traditional geometric models to advanced
algorithms like OpenPose, AlphaPose, and SimpleBaseline. These models en-
hance the precision and applicability of pose estimation, especially in dynamic
environments. As far as activity recognition, the chapter highlights the shift
from handcrafted features to robust DL models such as C3D, TSN, TSM, Slow-
Fast Networks, and X3D. These models excel in capturing spatial and temporal
dynamics, leading to accurate classification of human actions in videos. Facial
recognition has also seen a major transformation with DL. The chapter discusses
key models like DeepFace and FaceNet, emphasizing their use of convolutional
neural networks (CNNs) to automatically learn complex facial features. This has
greatly improved the accuracy of facial recognition, which is crucial for security
and personal identification. Finally, in object detection, the chapter outlines
the transition from traditional methods to DL algorithms, focusing on R-CNN,
YOLO, and SSD models. These models have enhanced real-time object detection
by increasing speed and accuracy, which is essential for autonomous vehicles

and robotic vision.
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Accelerated Multimodal Approach for
Edge Computing

In line with the trend towards decentralization in data processing, edge comput-
ing has gained a lot of popularity [83]. By processing data locally on embedded
devices, this approach reduces latency, conserves bandwidth and enhances data
privacy in real-world applications. Real-world applications also require high
accuracy and robustness, and multimodal processing generally provide more
accurate and reliable outputs than unimodal systems by combining information
from various sources [84]. Multimodal processing emerges significant challenges
in edge computing systems regarding data alignment and standardization and
the resource-constrained nature of embedded systems [85].

The main outcome of our research methodology addresses directly those
challenges with the development of an accelerated multimodal AI framework
for embedded devices. The proposed methodology handles the diversity of
data types in embedded devices, including images, audio and sensor readings,
required for a multimodal approach. This integration allows for a comprehen-
sive analysis of different datastreams, enhancing the devices’ ability to interpret
complex scenarios and make informed decisions.

Regarding the resource constrained natures of the edge devices, our frame-

work addresses these limitations by optimizing data processing, therefore con-
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serving power and extending operational life — a crucial factor in remote or
mobile applications. This optimization is particularly relevant when considering
the need for real-time or near-real-time responses in many applications.

The cost-effectiveness of the system is also another challenge that should be
addressed [86]. Integrating multiple functionalities into a single framework can
reduce the development and deployment costs associated with creating separate
systems for each data type. This integration is especially beneficial for small and
medium-sized enterprises, which may have limited resources for technological
investment.

Finally, in consumer-facing applications, such as smart homes and wearable
technology, an accelerated multimodal Al framework can significantly enhance
user experience [87]. By understanding and responding to a variety of user
inputs such as voice, gestures and environmental cues, these systems offer a
more intuitive and seamless interaction for the user.

In conclusion, an accelerated multimodal Al framework for embedded de-
vices represents a holistic solution that stems from our design methodology and

addresses a wide range of requirements and challenges.

3.1 Hardware Acceleration and Optimization

As the first step of our research, we investigated hardware accelerators in the
field of image processing. One of the most popular class of hardware accelera-
tors are the FPGAs, due to the high-speed and efficient processing not only in
image processing but also in many other applications. Their ability to be recon-
figured for specific tasks, offer significant advantages over traditional CPUs and
GPUs, particularly in terms of parallel processing capabilities and lower power
consumption. This is critical in image processing tasks, which often require
real-time processing of large datasets, complex operations and high through-
put. The parallelism in FPGAs allows for simultaneous processing of multiple
image pixels or operations, dramatically reducing computation time.

The chosen methodology involved identifying computationally intensive al-
gorithms commonly used in Al workflows and implementing them on suitable
hardware platforms. The focus on grayscale conversion, color transformations,
noise reduction, and edge detection stemmed from their widespread use and
computational demands in image preprocessing pipelines across various Al do-
mains [88]-[90]. These designs were implemented on the Altera DE2-115 FPGA
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and Pynqg-Z1 platform, respectively, and played a key role in AI model training
by offloading data loading and augmentation tasks from the GPU.

3.1.1 Accelerated Designs for Color Transformation and Edge

Detection

Starting with color transformations, grayscale conversion is a dimensionality
reduction technique that discards color information, often irrelevant for tasks
such as object detection or classification, while decreasing computational com-
plexity. By implementing this transformations on the Altera DE2-115 FPGA,
we can achieve substantial acceleration compared to software implementations,
enabling more efficient data preprocessing during both training and inference
[91].

VHDL Implementation

The core of the implementation is an Altera Cyclone IV EP4CE115 FPGA device.
This device offers substantial computational resources, including 114,480 logic
elements, up to 3.9-Mbits of RAM and 266 multipliers, making it well-suited
for handling intensive image processing tasks. Additionally, the system includes
a USB Host/Slave Controller (Cypress CY7C67200) for interfacing with external
devices. A key component of the system is the NIOS II soft processor, a con-
figurable CPU core synthesized on the FPGA. This processor is responsible for
managing the USB protocol, enabling communication between the FPGA and
a host computer. It uses the Avalon MM interface, a standard bus in Altera’s
FPGA architecture, to interact with the image processing peripheral.

The Grayscale module converts color images into grayscale images. The con-
version adheres to the ITU-R BT.709 recommendation [92], which uses specific
coefficients for the RGB channels to calculate the grayscale value. The formula

used is:

out = (0.21 * R+ 0.72 % G+ 0.07 x B) (3.1

Moreover, the Edge Detection module implements the Sobel Edge Detection

algorithm [93]. It uses a pair of 3 x 3 convolution masks, one for detecting
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Figure 3.1: Edge Detection RTL Diagram. The top-level modules include the Edge Detection
Module, Process Controller, and Read/Write Interface, which handle image data processing and
memory interaction. The bottom-level modules, Framework Interface, Load Controller, and
USB Interface, manage communication with external devices, control data loading, and facilitate
data transfer with the host computer.

horizontal gradients (Gx) and the other for vertical gradients (Gy). The mod-
ule processes the grayscale image and highlights the edges by calculating the
gradient strength at each pixel.

This VHDL code (Listing 3.1) implements an image processing system de-
signed for the Altera DE2-115 FPGA board, performing the Sobel edge detection.
The Sobel edge detection process computes the gradient in both the x (gx) and y
(gy) directions using the Sobel operator, and then calculates the gradient mag-
nitude by summing the absolute values of gx and gy. The resulting grayscale
value and the upper 8 bits of the Sobel edge detection value are assigned to
the output signals out_gray and out_sobel, respectively. This design ensures
efficient image processing suitable for FPGA implementation, taking advantage

of the parallel processing capabilities of the hardware.
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Listing 3.1: Our Sobel edge detection process computes the gradient in both the x (gx) and
y (gy) directions using the Sobel operator, and then calculates the gradient magnitude by

summing the absolute values of gx and gy.

I | —— Sobel edge detection process
2 |process(clk, rst_n)
begin
4 if rst_n = '0' then
5 gx <= (others => '0');
6 gy <= (others => '0');
7 sobel_val <= (others => '0');
8 elsif rising_edge (clk) then
9 -- Sobel Gx calculation
10 gx <= (-1 * conv_integer(in_r) + 1 * conv_integer(in_b) +
1 -2 * conv_integer(in_g) + 2 * conv_integer(in_g) +
12 -1 * conv_integer(in_b) + 1 * conv_integer(in_r));
13
14 -- Sobel Gy calculation
15 gy <= (1 * conv_integer(in_r) + 2 * conv_integer(in_g) + 1
* conv_integer (in_b) +
16 -1 * conv_integer(in_b) + -2 * conv_integer(in_g) +
-1 * conv_integer(in_r));
17
18 -- Calculate the gradient magnitude
19 sobel_val <= std_logic_vector(to_unsigned/(
20 integer (abs (gx) + abs(gy)),
2 sobel_val 'length));
22 end if;
23 |end process;

The hardware platform for this approach is the DE2-115 Cyclone IV E board,
notable for its Altera Cyclone IV EP4CE115 FPGA device, which features an
impressive array of logic elements, RAM and multipliers. The VHDL design en-
compassed image processing cores dedicated to grayscale conversion and Sobel
edge detection. The grayscale module adhered to the ITU-R BT.709 recom-
mendation for converting color to grayscale.

The edge detection module employed horizontal and vertical gradient detec-
tion kernels based on the Sobel Operator. This design was embedded into the
FPGA through a NIOS soft CPU, which was instrumental in decoding packets
and processing the image detection algorithms. The firmware aspect involved a
NIOS II soft processor managing the USB protocol and interfacing with image
processing peripherals. Additionally, a host software, developed in C, facilitated
the interface with the USB Controller and managed the workflow of image file
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Figure 3.2: High-level architecture of an image processing accelerator on an FPGA, featuring
a pipeline for grayscale conversion, pixel buffering, and Sobel edge detection. The controller
manages data flow through the Avalon bus, coordinating input/output interfaces and processing
modules.

inputs and outputs. This hands-on approach provided valuable insights into

low-level hardware design and FPGA architecture.

High Level Synthesis Implementation

While our exploration of hardware-accelerated image processing began with
a VHDL implementation of on the Altera DE2-115 FPGA, we continued to
streamline the development process and explore higher levels of abstraction by
transitioning to the PYNQ-Z1 platform. This allowed us to rapidly prototype
using HLS and deploy our algorithms using Python, significantly reducing de-
velopment time compared to traditional VHDL coding. By comparing resource
utilization, performance, and development time between the two implemen-
tations, we gained a comprehensive understanding of the trade-offs between
low-level control and high-level productivity in FPGA design. This compara-
tive analysis will inform our future hardware acceleration projects, guiding us
towards the most suitable methodology for achieving our specific goals.

The objective remained consistent with the VHDL approach, yet the execution
differed significantly. The hardware platform used was the Pynqg-Z1 board from
Xilinx, equipped with advanced features like a dual-core Cortex-A9 processor.

In the second design, we exploited HLS capabilities to generate the Intellec-
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tection. The pipeline includes grayscale conversion, pixel buffering, 3 x 3 grid organization, and
Sobel edge detection calculations, all orchestrated by a central controller for efficient data flow
and processing.

tual Property (IP) cores, by using C++ code written by us. In the new design,
we combined the Grayscale and Edge Detection modules together, to further
reduce the resource utilization. To exploit parallelism at these levels, we needed
each application’s timing diagrams for various inputs and function calls, as well
as an in-depth code analysis. In this paper, our goal is each function’s op-
timization by exploiting a variety of design techniques, namely loop unrolling
and pipelining.

The HLS implementation for the Edge Detection IP consists of four stages.
The first (AXIS2GrayArray) and the last (GrayArray2AXIS) are responsible for
transferring the image data through the AMBA AXI4-Stream Protocol Speci-
fication. We combine the grayscale conversion into the first stage to simplify
the design. In the second stage, we applied the Sobel operator but, to improve
the edge detection and provide more accurate results, we applied a Non-Max
suppression algorithm, which helps to eliminate the points that do not lie in
important edges. The second IP helps to improve image reconstruction per-
formance by offloading CPU calculations to Programmable Logic (PL), as the
three RGB channels are encoded into a 32-bit unsigned integer (Listing 3.2).
This is a crucial step, because, as we discovered in our experiments, performing
this computation on the CPU incurred 70ms of extra delay for every image of
640x480 pixels. Using our optimization, we reduced this operation to under 1 s.
We implemented it through AXI4-Stream, further optimizing the transfer of the
data by using a bidirectional DMA (read and write), benefiting our architecture

with reduced resource usage, in contrast to other implementations, which use
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one DMA for reading and one for writing

Listing 3.2: The formula that decodes an unsigned integer to three RGB channels

1 |// Channel:

2 |// 1 - Red, 2 - Blue , 3 - Green

out_data->data = (in_data->data & 0xff0000) >> 16;
out_data->data = (in_data->data & 0x00ff00) >> 8;
out_data->data = in_data->data & 0x0000ff;

In Listing 3.3, the provided C++ implementation demonstrates the color
transformation using HLS for converting an RGB image to grayscale, specifi-
cally designed for use with the Vivado HLS tool by Xilinx. Within the top-level
function ‘rgb2gray‘, we start by converting the input AXI stream (‘src_axi‘) to
an HLS image format (‘img_0’) with the ‘hls::AXIvideo2Mat® function. The
grayscale conversion occurs within nested loops, where each pixel’s RGB values
are read, and the grayscale value is calculated using the formula ‘gray = 0.21
*R + 0.72 * G + 0.07 * B*. This grayscale value is then assigned to a new
pixel in the output image (‘img 1°). After processing all pixels, the function
‘hls::Mat2AXIvideo® converts the grayscale HLS image back to an AXI stream
(‘dst_axi‘). The code uses HLS pragmas to optimize the loop for efficient hard-
ware execution, ensuring that each pixel’s operations are pipelined.

Figure 3.4 depicts a block diagram with the interface connections of the Edge
Detection with the DMA input and output of data. Researchers have reported
that, at a clock frequency of 100 MHz, data transitions may be established from
both AXI4 master and AXI-Stream slave to AXI4 master at a data rate of 400
MBps and 300 MBps, respectively, being a quota of the theoretical bandwidths
of 99.76% and 74.64%.
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Listing 3.3: C++ block for the grayscale conversion HLS design using the AXI-Stream

interface

2 |void rgb2gray (AXI_STREAM& src_axi,
3 AXI_STREAM& dst_axi, int rows, int cols) {

5 // Convert AXI4 stream to HLS image format
6 hls::AXIvideo2Mat (src_axi, img_0);

8 // Custom RGB to Grayscale conversion

9 for (int i = 0; i < rows; i++) {

10 for (int j = 0; j < cols; j++) {

11 #pragma HLS pipeline

12 hls::Scalar<3, unsigned char> pixel;

13 hls::Scalar<l, unsigned char> gray_pixel;

15 // Read pixel from RGB image

16 pixel = img O.read(i * cols + j);

18 // Compute grayscale value using the formula:
19 // gray = 0.299%R + 0.587*G + 0.114%B

20 unsigned char gray_value =

2 (unsigned char) (0.21 * pixel.vall[0]

22 + 0.72 % pixel.vall1]

23 + 0.07 * pixel.vall[2]);

25 // Assign the computed grayscale value

26 gray_pixel.val[0] = gray_value;

28 // Write the grayscale pixel to the output image

29 img_1.write(i * cols + j, gray_pixel);

33 // Convert HLS image format to AXI4 stream
34 hls::Mat2AXIvideo (img_1, dst_axi);
35 |}

Table 3.1 indicates the timing summary as reported by Vivado 2016 with
the Pynqg-Z1 project for our complete system implementation.

Figure 3.5 indicates the power consumption of our implementation, as re-
ported by Vivado after synthesis. The passive power consumption is around
0.156 watt (10%) of the total dynamic power requirements (1.383 watts). We
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Table 3.1: Design timing summary, showing the worst slack and the number of failing endpoints
for setup time, hold time, and pulse width constraints.

Setup Hold Pulse Width
Worst Slack: 0.358 ns | Worst Slack : 0.020 ns Worst Slack: 3.750 ns
Total Slack: 0 ns Total Slack: O ns Total Slack: O ns
Failing endpoints: 0 Failing endpoints: 0 Failing endpoints: 0
Total endpoints: 39,835 | Total endpoints: 39,835 | Total endpoints: 39,835

can safely assume that, with the Zynq processing system (PS7) idle, we can ex-
pect an average power consumption of 0.5 watt and below. In comparison with
other accelerators, such as that in [94], which often exceed 1.5 watts of power
consumption, our implementation is about three times more energy efficient.
The processing time of the Pynqg-7Z1 implementation averaged around 0.0422
seconds per image and the DE2-115 implementation around 0.0983 seconds.
However, the Pyng-Z1 board is running at 100 MHz instead of 50 MHz; thus,
we provide a theoretical sample by degrading the Pynq-7Z1 performance by half.
The expected total processing time of the Pynqg-Z1, running at a clock speed of
50 MHz, should be 0.0844 s (or 84 ms) approximately. The final result at the
same clock speed is still better at the Pynqg-Z1 board, resulting in a 14% faster

0.032W Device Static

0.033W Clocks
Signals
Logic

= BRAM

= DSP

m PS7

On-Chip Power

Figure 3.5: Power consumption per hardware component.
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Figure 3.6: Combined results from all platforms: (a) the result of the Pyng-Z1 implementation;
(b) the result of DE2-115 implementation; (c) the result of a C++ algorithm running on a
traditional CPU; and (d) the original image.

computation time.

Finally, the study showcased the significant advancements in HLS tools,
demonstrating their ability to provide competitive Quality of Results (QoRs)
when combined with manual RTL designs. The HLS approach, with its supe-
rior optimization in performance and efficiency, showed promising potential of
HLS within FPGA design communities for more rapid and efficient development
processes. This study not only provides a comprehensive comparison of the two
methodologies, but also opens avenues for further research and development in
the field of image processing accelerators.

Figure 3.6 gives a typical processed image outcome partitioned in four sub-
frames. The first subframe depicts the result of the Pynqg-7Z1 implementation and
the second one the result of DE2-115 implementation. In the third subframe,
we can see the outcome of the same algorithm running on a traditional CPU
and in the fourth and final one, the original image. We need to address that
our hardware designs provide accurate edge detection, identical to the output

of the algorithm running on the CPU.
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Figure 3.7: Processing time comparison between the two boards (lower is better). Normalized
performance is the theoretical performance with both boards running at the same clock speed.

Based upon our results, it seems that the HLS design performed slightly bet-
ter in comparison with the bare VHDL implementation (Figure 3.7). There are
some minor hardware differences between the two platforms but we can safely
assume that the HLS tools did an excellent job, producing a highly competitive
design comparable and slightly better than the manual counterpart. In addition,
the HLS tool made a huge increase in productivity, since many of the supported
hardware underlying functions (e.g., AXI4 protocol) are pre-implemented and
ready to use.

With the correct configuration, the HLS tool produced highly optimized
VHDL code for the specific design. The two operators can be “chained” to-
gether in a single cycle by the designer, by performing operation scheduling
within the target clock periods, so that false paths [95] are avoided. It can
reduce the number of bits required by datapath operators by making bitwidth
optimization, reducing the area and power and increasing the performance of
the design.

Finally, HLS can also make use of the multiple BRAMs to store data struc-
tures for fast memory accesses at a low cost. These memory elements have
a limited number of memory ports and the customization of memory accesses
may require the creation of an efficient multi-bank architecture to avoid lim-
iting the performance. In addition, there are numerous loop optimizations by
pipelining, allowing a loop iteration to start before the completion of its prede-
cessor, provided that data dependencies are satisfied. There are many more HLS
optimizations besides the above, which do not affect our current design imple-

mentation, but in other cases may dramatically increase the performance [96].
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3.1.2 Accelerated Noise Reduction Design

During our the exploration of Al applications, we have observed that their per-
formance is often hindered by the presence of noise in raw data. This noise
can obscure relevant features, degrade accuracy, and increase computational de-
mands. Recognizing the need for an additional preprocessing step to address
this issue, we worked on the development of an accelerated noise reduction sys-
tem implemented on the Xilinx Pynq-Z1. By exploiting the parallel processing
capabilities and hardware acceleration of FPGAs, we aim to efficiently mitigate
noise in real-time, therefore enhancing the quality of data fed into Al models.

This section details the noise reduction technique that employs image stack-
ing, a process where multiple frames are captured in quick succession and then
algorithmically combined. By averaging pixel values across these frames, the
technique enhances signal quality and reduces noise. The theoretical under-
pinnings of image stacking, including the statistical basis for noise reduction
through averaging, are explained. This section also discusses the conditions
under which image stacking is most effective and the parameters that influence
its performance.

Noise in digital photography can be broadly categorized into two types: (a)
shot noise, which arises from the discrete nature of photon capturing and (b)
thermal noise, stemming from sensor and circuitry imperfections. Low-light
conditions enhance these noise types, leading to grainy and poor-quality images.
Existing noise reduction techniques, including spatial and temporal methods,
come with significant trade-offs. Spatial filters, for instance, may reduce noise,
but also tend to blur the image, leading to loss of detail. Temporal averaging
can be effective, but often requires static scenes and is computationally intensive.

To tackle the inherent trade-offs present in conventional photography tech-
niques, such as aperture limitations in cell phone cameras or the inadequacies
of synthetic aperture formation and optical image stabilization, a camera system
was developed capable of capturing and merging multiple images. This system
effectively addresses the limitations of low light photography, offering a means
to enhance image quality without the drawbacks of traditional methods.

The core of this research lies in the methodology of burst photography,
where multiple images are captured and merged to create a single, high-quality
image. This process involves capturing images with lower exposure to avoid
highlight clipping, thus enabling the capture of a more dynamic range. Shorter

exposure times are also selected to reduce camera shake blur. The system selects
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a “reference” frame from the burst and merging patches from “alternative”
frames into this frame to reduce noise and enhance overall image quality. The
hardware implementation of this approach is carried out on a Xilinx PYNQ-Z1
board, chosen for its compatibility with PYNQ, an open-source framework that
allows for the exploitation of the capabilities of Xilinx Zynq All Programmable
SoCs. The board’s features, including a dual-core Cortex-A9 processor and
numerous logic slices, make it an ideal platform for this application. The authors
used C++ for HLS of the HDL blocks and configured the peripheral blocks
for system integration. We exploit HLS capabilities to generate the Intellectual
Property (IP) cores, by using C++ code written by us. In order to exploit the
hardware parallelism, we need each application’s timing diagrams for various
inputs, function calls, as well as an in-depth code analysis. Our core consists of

two main components:

¢ Tile Merging: The HLS implementation for the Tile Merging IP consists
of 4 stages. The first (AXIS2ImgArray) and the last one (ImgArray2AXIS)
are responsible for transferring the image data through the AMBA AXI4-
Stream Protocol Specification. We combine the array conversion into the
first stage to simplify the design. We are storing the images as FIFO
(First In First Out) queues and at a second stage we split each image to a
predefined set of 3 x 3 tiles. We are trying to match features between coher-
ent image tiles in order to minimize ghosting and provide more accurate
results. Based on some heuristics (color channel isolation, brute-search
neighboring pixels etc.) we are trying to match at least one 3 x 3 pixel grid

with minimal color variation (Listing 3.4).

¢ Int2RGB: The second IP helps to improve image reconstruction perfor-
mance by offloading CPU calculations to Programmable Logic (PL), as the
three RGB channels are encoded into a 32-bit unsigned integer. This is
a crucial step, because, as we discovered in our experiments, performing
this computation on the CPU incurred 280 seconds extra delay for every
image of 4000 x 3000 resolution (12 megapixels). Using our optimization
we reduce this operation’s latency to under one second. We implement
it through AXI4-Stream, furthermore optimizing the transfer of the data
by using a bidirectional DM A (read and write), benefiting our architecture
with reduced resource usage, in contrast to other implementations, which

use one DMA for reading and one for writing.
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Listing 3.4: C++ block for tile-based merging with feature matching and noise reduction
for high-quality image creation.The process involves tile splitting, feature matching between
reference and alternative frames using heuristics based on pixel intensity differences.

// Tile-based merging
#pragma HLS PIPELINE
// Extract tiles

// Feature matching and noise reduction
bool match = false;
for (int ti = 0; ti < TILE_SIZE; ti++) {
for (int tj = 0; tj < TILE_SIZE; tj++) {
// Heuristic for feature matching: comparing pixel
intensities
if (abs(tile_ref.val[ti][tj].vall[O]
- tile_alt.val[til[tj].val[0]) < 10 &&
abs(tile_ref.val[ti]l[tj].vall[1]
- tile_alt.vall[ti][tj]l.vall1]) < 10 &&
abs(tile_ref.val[ti]l[tj].val[2]
- tile_alt.vallti][tj].vall[2]) < 10) {

match = true;
} else {

match = false;

break;

}
if (!match) break;
}
// If match is found, average the tiles for noise reduction
if (match) {
for (int ti = 0; ti < TILE_SIZE; ti++) {
for (int tj = O; tj < TILE_SIZE; tj++) {
hls::Scalar<3, unsigned char> avg_pixel;
avg_pixel.val[0] = (tile_ref.vall[ti][tj].vall[O]
+ tile_alt.vall[til[tj]l.vall[0]) / 2;
avg_pixel.val[1l] = (tile_ref.vall[til[tj]l.vall1]
+ tile_alt.valltil[tjl.vall1l) / 2;
avg_pixel.val[2] = (tile_ref.vall[ti][tj].vall[2]
+ tile_alt.valltil[tjl.vall2]) / 2;

img_1.write(i + ti, j + tj, avg_pixel);

} else { ... }

56




In the experimental section, the system is evaluated using devices with 13-
megapixel sensors, capturing bursts of up to 15 frames. This evaluation demon-
strates the system’s capability to process a significant volume of image data
efficiently. The results show that the hardware-accelerated approach is signif-
icantly faster than a software implementation running on a standard PC, with
the hardware accelerator being 8.5 times faster on average.

We compared the results using the Mean Square Error (MSE) and the peak
signal-to-noise ratio (PSNR), as shown in Eq. (3.2) and (3.4), respectively [97].
The PSNR is often used to measure the quality between a compressed and the
original image, denoting a peak error measure, whereas the MSE is used to
measure the cumulative squared error between the original and the compressed
image. Note that the higher the PSNR, the better the quality of the reconstructed

or compressed image, while the lower the MSE value, the lower the error, re-

spectively.
1 m—1n-—1 o o
MSE = —- (11, 5) = g, )ID* (3.2)
i=0 j=0
=,
Ty(w) = + > T.(w) (3.3)
z=0

(3.4)

PSNR = 20log,, ( MAX, )

VMSE

Finally, MAXT is the maximum signal value existing in the original known to
be a high-quality image. We use the MSE metric for practical purposes, being
the comparison between the true pixel values of a high-quality image, captured
with a professional camera, and the respective ones of the algorithm, in order
to minimize the MSE between the two aforementioned images, with respect to
the image’s maximum signal value.

Our results have less noise than the images derived by a typical imaging
pipeline, especially in low-light scenes. In Figure 3.8, we can clearly see the
benefits of this approach. We managed to decrease the ISO by a factor of three
and still capture a better exposed and without noise image. In our experiment,
we used a shutter speed of 1/10 sec per frame, which we decided that is an
average value. In a complete camera system those parameters will be automat-
ically adjusted in real-time using sophisticated algorithms, to fully exploit the

hardware capabilities.
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Figure 3.8: Combined image results from a mobile device with Sony IMX363 sensor (/1.9
3.94mm) in low light (1 lux). At the left (a) is the original image captured (1/10 sec. ISO
9600). In the middle (b) we have an FPGA processed result (1/10sec. 1SO 3200, 8 frames).
Finally, on the right side (c), the output of the FPGA accelerator is shown (1/10sec. ISO 3200,
15 frames). Clearly the output result (c) is very acute, bright and crisp.

3.2 Optimized Multimodal Approaches

As the need for intelligent, real-time decision-making grows, the focus expands
beyond preprocessing to encompass sophisticated AI models capable of running
on edge devices. Edge computing refers to processing data at or near the
source of data generation, reducing latency and bandwidth usage compared to
centralized data centers. This shift necessitates models that are both powerful
and optimized for the limited computational resources typical of edge devices.
In this section, we will explore highly optimized AI approaches, stemmed from
our design methodology, in the domain of activity recognition, abnormal event
detection, object detection and facial identification. These AI models feature a
novel multimodal design employing different fusion levels and techniques to

exploit the complementary data captured by a wide range of sensors.

3.2.1 Multimodal Stream Classification

Real-world data is rarely confined to a single modality. Images, audio, and
other sensor data often coexist, offering complementary insights into complex
phenomena. Multimodal stream classification addresses the need to analyze and
interpret this diverse data holistically. By integrating information from multiple
modalities, we can unlock a deeper understanding of events, behaviors, and

patterns that would remain hidden when considering each modality in isolation.
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Figure 3.9: Architecture of a multimodal DL model for abnormal event detection. The model
processes LFR RGB video (LFR-RGB) and high-frame-rate RGB video, depth maps, and audio
(HFR-RGB, HFR-Depth, HFR-Audio) using separate convolutional (C) and transformer (T)
blocks before merging their outputs for a final prediction.

The architecture of our model is designed with two separate pathways: the
Low Frame Rate (LFR) and High Frame Rate (HFR) pathways. The LFR path-
way is adept at processing spatial information at a reduced temporal resolution,
capturing detailed spatial features and contextual information within the trans-
portation vehicle. This is essential for understanding the static components
of the scene. The HFR pathway, in contrast, is tailored to capture temporal
dynamics and rapid movements, which are critical for detecting fast-occurring
events such as theft or physical altercations. The integration of these two path-
ways allows the model to leverage both spatial and temporal data, significantly
enhancing its accuracy and robustness in real-time event detection.

A critical component of the model is the sophisticated data fusion strategy
employed to combine data from the LFR and HFR pathways. This strategy
involves multi-level feature fusion, where features from different layers of both
pathways are combined, ensuring that the model benefits from both low-level
and high-level feature representations. The synchronization mechanism within
the model aligns the outputs of the LFR and HFR pathways, maintaining tem-
poral coherence and ensuring that the fused data is temporally consistent and
accurate.

To optimize the model for deployment on edge devices like the NVIDIA Jet-
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son AGX Xavier, several enhancements and optimizations were implemented.
Model quantization plays a pivotal role in this optimization process. The model
employs INT8 quantization, converting 32-bit floating-point parameters into
8-bit integers, significantly reducing the model’s size and computational com-
plexity. This allows for faster inference times without substantially impacting
accuracy. Quantization-aware training is used to minimize the loss in accuracy
near 5%d ue to quantization, adjusting the model’s weights during training to
accommodate the reduced precision. The use of CUDA acceleration is another
key aspect of the model’s optimization. By utilizing the CUDA cores for paral-
lel computation, the model processes multiple datastreams simultaneously, sub-
stantially reducing inference time and making the model suitable for real-time
applications. Custom CUDA kernels are designed to maximize the utilization
of the GPU’s resources, enhancing the model’s computational efficiency. Layer
fusion is employed to further optimize the model’s performance. This technique
combines adjacent layers in the neural network into a single operation, reducing
the total number of operations and memory accesses required during inference.
This not only minimizes latency, but also increases the throughput of the model.

Asynchronous data loading is implemented to ensure that data loading does
not become a bottleneck in the model’s performance. By employing multi-
threading for data loading, the model loads data in parallel with the processing
of other datastreams, keeping the GPU continuously fed with data and elimi-
nating idle times. A pre-fetching mechanism is used to load data into memory
before it is needed for processing, reducing the waiting time for data retrieval.
Moreover, preprocessing steps such as image cropping, resizing and normal-
ization are performed directly on the GPU to optimize the data pipeline. This
minimizes the data transfer times between the CPU and GPU, a critical factor
in reducing overall latency. The preprocessing pipeline is streamlined and op-
timized for GPU execution, ensuring that these operations do not hinder the
model’s performance.

A critical aspect of the model is the fusion of data from the LFR and HFR
pathways, ensuring comprehensive video understanding. This fusion allows the
model to leverage both spatial and temporal data, enhancing its accuracy and
robustness. The architecture utilizes lateral connections between the pathways at
various depths, enabling a rich multi-level exchange of spatial-temporal features.
This methodological approach ensures that the model is not only able to detect
abnormal events accurately, but also do so in real-time, which is vital for the

prompt response required in public transportation settings.
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Figure 3.10: Pipeline of the pose estimation classification. First, key points of human figures
are identified within each frame. Then, pose tracking is performed by matching key points
between frames. Features are extracted from the tracked key points, buffered, and fed into a
bidirectional LSTM network for analysis. The LSTM output is then used to classify the pose
into predefined categories.

3.2.2 Pose Classification

Human pose estimation, the task of identifying key points on a person’s body,
has opened doors to numerous applications. However, understanding the mean-
ing behind these poses is equally vital. Pose classification addresses this need by
interpreting the arrangement of body key points and assigning them to prede-
fined categories like “standing”, “sitting”, or “jumping”. This enables a deeper
understanding of human actions, behaviors, and intentions. Pose classification
bridges the gap between recognizing body positions and understanding their sig-
nificance, expanding the possibilities for technology to interact with and learn
from human movement.

The pipeline of our pose classification approach consists of 4 stages as shown
in Figure 3.10. In stage one, the pose of each person in the frame is extracted (15
keypoints). In the second stage, a skeleton tracking algorithm is performed, as-
sociating persons across multiple frames. Regarding the third stage, the detected
and tracked human body key-points are represented as trajectories and during
the fourth stage they are “fed” into a Multi-Layer Classifier which classifies each

action into normal or abnormal.
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3.2.2.1 Pose Estimation

For the first stage, we are using a custom implementation of the RMPE by Fang
et al. [39] for training (better accuracy) and OpenPose [19] for testing (higher
performance). The integrated implementation uses VGG19, a CNN model pro-
posed by K. Simonyan and A. Zisserman [98]. We are using this model to
improve the accuracy of the skeleton extraction for the training process and
further perform data augmentation without sacrificing the data integrity. We
generate noisy data with variable intensities, based on the extracted data from
the backend, and we combine these data with the original ones as an augmen-
tation technique. Extensive tests indicated that the model generalizes better
and the accuracy improves. Although we initially implemented AlphaPose us-
ing VGG for training our model, multiple tests shown that we could use it for
evaluation too, when specific parameters (resolution, heatmaps etc.) are tuned.
We apply the pose estimation framework in the presence of inaccurate human
bounding boxes. The generated pose proposals are refined by parametric pose
NMS to obtain the estimated human poses. In this stage, 17 different human
body keypoints are detected and the number of people in each frame is obtained.
The number of N frames for the feature generation along with the evaluation
accuracy are depicted in the graph below (Figure 3.11). As we can see, a buffer
size (window size) of 5 frames achieved the best accuracy on the evaluation test.
Higher values may result in lower accuracy as the tracker may fail to consistently
detect people when the shuttle is overcrowded. We are currently investigating
some optimizations of the tracker, in order to further increase the size of the
buffer.

The detected and tracked human body key-points are converted into features
and forwarded to an LSTM Neural Network. For extracting features, every
person’s skeleton data are stored into a circular (ring) buffer deque (double-
ended queue) of N frames (window size) into the Feature Generator class.

The buffer T is considered as invalid if the newest appended skeleton does
not contain at least the neck (Point 0) or one of the thigh bones (Point 7 or
10) shown in Figure 3.12, as the height of the skeleton (used for normalizing
features) cannot be calculated. The feature extraction process occurs when the
buffer is full.

The number of N frames for the feature generation along with the evaluation
accuracy are depicted in Figure 3.11. A buffer size (window_size) of 5 frames

achieved the best accuracy on the evaluation test [99]. Higher values may result
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Figure 3.11: Performance evaluation across different buffer sizes. The validation accuracy in-
creases as the window size increases from 2 to 3 frames, peaks around 3-5 frames, and then
slightly decreases before stabilizing for larger window sizes. A shaded area around the line
indicates the variability of the validation accuracy across different experiments or data splits.

height

Normalized joint positions Joint velocities Center velocity

Figure 3.12: Representation of the extracted features: Normalized joint positions relative to body
height, joint velocities between frames represented as arrows, and center velocity as a curved
arrow depicting overall body movement.

Table 3.2: Features extracted from pose classification.

Feature Extraction

e

A direct concatenation of joints positions of the IV frames.

H | Average height of the skeleton of the previous N frames. This height equals
the length from Neck to Thigh. Used for normalizing.

X | Normalized joint positions [Xs — mean(Xs)]/H
V; | Velocities of the joints {X[t] — X[t — 1]}
V. | Velocity of the center {sum(X([t] — X[t — 1])}
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in lower accuracy as the tracker occasionally fails to consistently track people
when the shuttle is overcrowded. Finally, the LSTM model is capable of binary
or multi-class softmax classification and contains three hidden layers of size
(32x64) with the Rectified Linear Unit (ReLU) activation function. An overview

is shown in Figure 3.10.

3.2.3 Spatiotemporal Autoencoder

Raw video data can be overwhelming, consisting of countless frames and intri-
cate details. Spatiotemporal autoencoders offer a powerful tool for understand-
ing the spatiotemporal patterns hidden within video sequences. By encoding
the visual information from consecutive frames into a compressed representation
and then reconstructing it, these models learn to capture the essential motion
dynamics, object interactions, and scene changes. This enables them to filter out
noise, identify salient objects, and predict future frames. In video analysis, spa-
tiotemporal autoencoders find applications in tasks such as anomaly detection,
where they can identify unusual events or behaviors by recognizing deviations
from the learned patterns.

The approach is based on the principle that the most recent frames of video
will be significantly different than the older frames, in case of an abnormal
event. Our goal, inspired by Lu et al. [100], is to train an end-to-end model
consisting of both a spatial feature extractor and a temporal encoder-decoder
that combined learn the temporal patterns of the input volume of frames. So
as to minimize the reconstruction error between the input and the output video
volume reconstructed by the learned model, we trained our model using video
volumes of only normal scenes. After our model’s proper training, we expect to
have low reconstruction error in a normal video volume as opposed to a video
volume containing abnormal scenes. Finally, our system will be able to detect
the occurrence of an abnormal event, by thresholding on the error produced by

each testing input volume.

3.2.3.1 Architecture

There are two stages that form an autoencoder: encoding and decoding. Au-

toencoders set the number of encoder input units to be less than the input;
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thus, they were first used to reduce dimensionality. Usually, unsupervised back-
propagation is used for training, helping the reconstruction error of the decoding
results from the original inputs to decrease. Generally, an autoencoder can ex-
tract more useful features when the activation function is non-linear rather than

some common linear transformation methods, such as PCA.

3.2.3.2 Spatial Convolution

In a deep CNN, the main objective of convolution is to extract information from
the input frame. The convolution process maintains the spatial relations of
pixels by using kernels to extract low level features. In raw mathematics, the
convolution operation performs dot products across filters of partial input. Sup-
posing an nxn input layer, followed by a convolutional layer, then if we use an
mxm filter W, the output size will be (n —m + 1)x(n —m + 1). Through the
training stage, a CNN learns the values of these filters by itself, although some
parameters such as the filter size and the number of layers still need to be de-
fined. The larger the number of filters used, the more information that gets
extracted and the better the network generalizes. Yet, there is a trade-off and
balance is a critical factor when it comes to the number of filters used, as more

filters would impact the performance negatively and require more resources.

3.2.3.3 Preprocessing

At this stage, our task is to convert raw data into aligned and acceptable input
for the model. To do so, each frame extracted from the raw videos is then
resized to 64x64. To ensure that the input images are all on the same scale, the
pixel values are scaled between 0 and 1 and each frame subtracted by its global
mean image for normalization. The mean image is calculated by averaging the
pixel values at each location of each frame in the training dataset. After that,
the images are converted to grayscale to reduce dimensionality. Finally, the
processed images are then normalized to have zero mean and unit variance.
As mentioned before, we use video volumes as input to our model, where each
volume consists of 10 consecutive frames with various skipping strides (Figure
3.13). As the number of parameters in this model is large, we also need a

large amount of training data. Following Lu’s [100] practice, to increase the
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Figure 3.13: Illustration of an abnormal event detection system using a sliding window approach
and a ConvLSTM autoencoder for video analysis. The system learns normal patterns from video
sequences and identifies anomalies based on the reconstruction error of the autoencoder.

size of the training dataset, we perform data augmentation in the temporal di-
mension. To generate these volumes, we concatenate frames using sequences,
namely being stride-1, stride-2, and stride-3. For example, the stride-1 sequence
consists of frame numbers 1,2,3,4,5,6,7,8,9,10, whereas the first stride-2 se-
quence contains frame numbers 1,3,5,7,9,11,13,15,17,19. Now the input is

ready for model training.

3.2.3.4 Feature Learning

In order to learn the regular patterns in training videos, we propose a convo-
lutional spatiotemporal autoencoder. Our architecture consists of two parts - a
spatial autoencoder for learning spatial structures of each video frame, and a
temporal encoder-decoder for learning temporal patterns of the encoded spatial
structures. As illustrated in Figure 3.13, the spatial encoder and decoder have
two convolutional and deconvolutional layers respectively, while the temporal
encoder is a three-layer ConvLSTM model. Convolutional layers are well-known
for their superb performance in object recognition, while the LSTM model is
widely used for sequence learning and time-series modelling and has proved its
performance in applications such as speech translation and handwriting recog-

nition.
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Figure 3.14: Our Autoencoder model pipeline: We start with a buffer of 20 input frames, each
with a resolution of 64 x 64 pixels and 1 channel. The spatial encoder extracts spatial features
from the input frames. Then, the temporal encoder captures temporal dependencies between
frames. The bottleneck layer further compresses the temporal information. Subsequently, the
temporal decoder decodes the temporal information back to its original dimensions. Finally,
the spatial decoder reconstructs the output frames with the same resolution as the input.

3.2.3.5 Autoencoder

There are two stages that form an autoencoder: encoding and decoding. Au-
toencoders set the number of encoder input units less than the input; thus,
they were first used to reduce dimensionality. Usually, unsupervised back-
propagation is used for training, minimizing the reconstruction error of the
decoding results from the original inputs. Generally, an autoencoder can ex-
tract more useful features when the activation function is non-linear rather than

some common linear transformation methods, such as PCA.

3.2.3.6 Spatial Convolution

The primary purpose of convolution in a CNN is to extract features from the
input image. Convolution can preserve the spatial relationships between pixels
by using small squares of input data to learn image features. Mathematically,

convolution performs dot products between the filters and local regions of the
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input. Assuming that we have some n x n square input layer, followed by
the convolutional layer, then if we use a mxm filter W, the convolutional layer
output will be of size (n —m +1)(n —m + 1).

During the training process, a CNN learns the values of these filters on its
own, although parameters such as the number of filters, filter size, the number of
layers before training still need to be specified. The larger the number of filters
used, the more image features get extracted and the better the network becomes
at recognizing patterns in unseen images. However, balance is key when it
comes to the number of filters used, as more filters would add to computational

time and exhaust memory faster.

3.2.3.7 Recurrent Neural Network

In a traditional feedforward neural network, we assume that all inputs (and
outputs) are independent of each other. However, in tasks involving sequences,
learning temporal dependencies between inputs are important, as e.g., a model
of word predictor should be able to derive information from the past inputs.
An RNN works just like a feedforward network, except that the values of its
output vector are influenced not only by the input vector, but also on the entire
history of inputs. In theory, RNNs can make use of information in arbitrarily
long sequences, but in practice, due to vanishing gradients, they are limited to

looking back only a few steps.

3.2.3.8 Long Short-Term Memory

To overcome this problem, a variant of RNN is introduced: a LSTM model
(Figure 3.15) that incorporates a recurrent gate called forget gate. With the new
structure, LSTMs prevent backpropagated errors from vanishing or exploding.
Therefore, LSTMs can work on long sequences and can be stacked together to

capture higher level information.
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Figure 3.15: The structure of a typical LSTM unit. The blue line represents an optional peephole
structure, which allows the internal state to look back (peep) at the previous cell state C(;_1)

for a better decision.
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Figure 3.16: The zoomed-in architecture at time t, where t is the input vector at this time step.
The temporal encoder-decoder model has 3 ConvLSTM layers.

3.2.3.9 Convolutional Long Short-Term Memory

The Convolutional Long Short-term Memory (ConvLSTM) model, considered
a variant of the LSTM architecture, was introduced by Shi et al. in [101] and
has been recently utilized by Patraucean et al. [102] for video frame prediction.
Compared to the usual fully connected LSTM, ConvLSTM, as shown in Figure
3.16, has its matrix operations replaced with convolutions. ConvLSTM requires
fewer weights and yields better spatial feature maps, by using convolution for

both input-to-hidden and hidden-to-hidden connections.
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3.2.3.10 Regularity Score

We define the reconstruction error as the Euclidean distance across an input
and a reconstructed frame. Specifically, the following equations describe the

reconstruction error, where t denotes the frame in a sequence:

e(t) = |z(t) = fula(®))’ (3.5)

where f,, is the learned weights by the spatiotemporal model. The irreg-
ularity score s, (t) is calculated by scaling between 0 and 1. Eventually, the
regularity score s, (t) can be derived by subtracting the reconstruction score

from 1:

e(t) — e(t)min

D (3.6)

Sq(t) =

Sp(t) =1 — s4(t) (3.7

Once the model is trained, its performance can be evaluated by feeding in
testing data and checking whether it can detect abnormal events while maintain-
ing a low false alarm rate. For a better comparison, we used the same formula
as Hasan et al. [103] to calculate the regularity score for all frames. Our only
difference is that the learned model is of a different kind. The reconstruction er-
ror of all pixel values in a frame of the video sequence is taken as the Euclidean
distance between the input frame and the reconstructed frame (Figure 3.16).
The reconstruction error or cost of a frame sequence is calculated as the differ-
ence between the ground truth (original frames) and the reconstructed frames
(prediction — model output). The frame sequence is flagged as “abnormal” if
the reconstruction cost exceeds a certain threshold. An example of a prediction

with a low regularity score is shown in Figure 3.17.

3.2.3.11 Thresholding

Using a threshold on the reconstruction error, we are able to determine whether
a video frame is normal or abnormal. A predefined threshold is not a ro-
bust method since our solution should operate in real-time and support mul-

tiple camera sensors as we mentioned earlier in the design principles. A fixed
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Figure 3.17: Flowchart illustrating the abnormal event detection process using a reconstruction
cost-based approach. Original frames are compared to reconstructed frames from an autoen-
coder, and if the calculated reconstruction cost exceeds a predetermined threshold, the event is
classified as abnormal.

threshold value can alter the sensitivity of the event detection, rendering it in-
appropriate in some scenarios. In addition, a wrong threshold can prevent the
detection of certain abnormal events or produce false positives. In order to solve
this issue, we introduce a variable thresholding technique in order to find the
optimal value in real-time. The initialization procedure now includes a “warm-
up” session, in which we aggregate the individual regularity score of each frame.
During that session, no detections are performed, as we consider the events as
regular. As the buffer continues to fill, we are able to calculate the average
reconstruction error and provide a threshold value tailored to the specific con-
ditions. Figure 3.17 indicates an abnormal scenario with the aforementioned

metrics.

3.2.4 Hybrid LSTM Classification

Hybrid LSTM classification offers a sophisticated solution by combining the
strengths of convolutional autoencoders (CAEs) and RNNs. This approach be-

gins by training a CAE on regular data, allowing it to learn a compressed repre-
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Figure 3.18: Example of a prediction with a lower regularity threshold. Red blocks in the image
represent a high reconstruction cost.

sentation that captures essential features while discarding noise. This encoder is
then integrated with a LSTM network, forming a hybrid architecture that excels
at sequence modeling. The resulting model is fine-tuned on specific classifica-
tion tasks, leveraging the encoder’s ability to extract meaningful features and
the LSTM’s capacity to model temporal dependencies.

This approach works with the principle of having an unbalanced dataset
with rare anomalous events. Therefore, it is possible to manually go through
the anomaly outputs and flag some of them as false positives. In this way, we

can let the previous autoencoder neural network model act as a High Recaller.

3.2.4.1 Semi-supervised Learning

The threshold is decreased so that almost all the actual anomalies are de-
tected (high recall) along with other false positive anomalies (low precision).
To achieve the semi-supervised approach, we designed a new model which
includes the previous Encoder and an LSTM which acts as a classifier.

In real-time inference the anomalies predicted by the high recaller model (au-
toencoder neural network) are sent through the false positive reduction model

(hybrid model). This combination of neural networks (Figure 3.19) should
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Figure 3.19: Model architecture of the hybrid model. The red box contains components of the
previous autoencoder approach. The green components indicate the new hybrid model which
acts as a classifier.

provide a deep neural network model with high recall and high precision.

3.2.4.2 Training

The training process of the new experiment consists of 3 stages and it is depicted
in Figure 3.20. At first, the autoencoder model (encoder + decoder) is being
trained with unsupervised data to learn regularity. In the second stage the
encoder weights are transferred to the hybrid model. The encoder’s layers are
marked as non-trainable. Finally, we perform supervised training using only
the LSTM classifier.

3.2.5 Two-stream Action Classification

Another challege in action classification is the varying duration of the detected
action. For this reason, capturing both the subtle movements and the rapid

dynamics of motion is crucial. Two-stream action classification, named as
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Figure 3.20: A three-stage hybrid training approach for classification tasks. Stage 1: Unsuper-
vised pre-training of an autoencoder on unlabeled data. Stage 2: Transfer of learned encoder
weights to a separate encoder module. Stage 3: Supervised training of the classifier using the
fixed encoder on labeled data.

SlowFast, addresses this challenge by introducing a dual-pathway architecture.
The “Slow” pathway focuses on analyzing the spatial information in individual
frames at a lower frame rate, extracting detailed appearance features. Simul-
taneously, the “Fast” pathway operates at a higher frame rate, capturing the
temporal evolution and motion patterns present in the video. This separation
of pathways allows the model to effectively model both the static and dynamic
aspects of visual content, leading to improved performance in action recognition
tasks.

The SlowFast algorithm is based on 3-dimensional well-known convolutional
networks ResNets that investigate contrasts of action speed along the time axis of
frames. The algorithm consists of two parallel streams with different framerates:
a slow pathway and a fast pathway as Figure 3.21 presents. These two pathways
own some significant different temporal speeds, able to recognize action in a
sequence of frames. In particular, the fast pathway was designed to understand
fast changing motions, but with fewer spatial details. On the other hand, the
slow pathway was designed to recognize slow changing motions, but with a
high level of spatial details. The SlowFast algorithm was configured to process
rectangle RGB images of 224x224 dimensions. Moreover, Adam optimizer with

0.001 learning rate was selected to minimize the categorical cross-entropy loss
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Figure 3.21: The network employs two pathways: a slow pathway that processes LFR RGB
frames to capture spatial semantics, and a fast pathway that processes HFR RGB frames at a
lower resolution to capture temporal information. The two pathways are then fused together
before making a final prediction. C denotes convolution operation, T denotes temporal pool-
ing/sampling operation, o is the frame rate ratio between the slow and fast pathway, 8 is the
channel ratio between the slow and fast pathway, HW is the spatial size of the feature map, and
lateral connections are used for feature fusion between the two pathways.

function. The SlowFast trained for a large number of epochs, equal to 300
aiming to allow the neural network to learn from scratch since it does not
employ pre-trained weights.

3.2.6 Overhead Abnormal Event Detection

The ability to detect abnormal events from an overhead perspective offers a
unique advantage for monitoring large areas but it comes with the significant
challenge of barrel distortion. Overhead abnormal event detection using fisheye
cameras addresses this need by leveraging the wide field of view and distortion
characteristics of fisheye lenses. These cameras capture a panoramic view of a
scene, allowing for the observation of a wider area with fewer cameras compared
to traditional lenses. The distortion introduced by fisheye lenses can be corrected
using specialized algorithms, enabling accurate object detection and tracking. By
analyzing the motion patterns, object interactions, and scene dynamics captured
by fisheye cameras, this approach can identify unusual events.

For this reason, our approach utilizes a CAE with two main parts: an en-

coder, which compresses the input data into a lower-dimensional latent space;
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and a decoder, which reconstructs the data from the latent space back to the
original input space. The CAE learns to capture the important features of the
input data while removing noise or redundancy.

The encoder part of the CAE consists of a series of convolutional layers
that apply learned filters to the input data. Convolutional layers are particularly
effective for extracting extracting spatial features from images due to their ability
to learn hierarchical patterns. The encoder’s architecture can be formalized as

a function:

henc(x) = f(Wenc * T+ benc) (38)

where z is the input data, We,. represents the weights of the convolutional
filters, bene denotes the biases, * indicates the convolution operation, and f is a
non-linear activation function such as ReLU or Sigmoid.

The ConvLSTM2D layer is a recurrent layer that processes data in both space
and time. It is specifically designed for problems where the context in both
dimensions is crucial, such as videos. The layer not only applies a convolution
operation to the input data, but also maintains a hidden state that captures
temporal information. The ConvLSTM2D layer can be expressed mathematically

as:

ht, Cy = CODVLSTM2D(ht_17 Ct—1, ZEt) (3.9)

where h; is the hidden state at time ¢, ¢; is the cell state at time ¢, and z; is
the input at time ¢.

The decoder mirrors the encoder structure, but uses deconvolutional (trans-
posed convolution) layers to reconstruct the input data from the latent space
representation. The reconstruction can be quantified using the proposed Center
Weighted Loss (CWL) loss.

3.2.6.1 Center-Weighted Loss

Regarding our loss function, we combined the traditional MSE loss with a spatial
weighting mechanism that assigns higher weights to pixels closer to the center
of the image. This weighting can help the autoencoder focus more on accurately
reconstructing the central part of the image, which has higher impact based on

the distribution of passengers in the cabin space. The proposed loss function is
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defined as follows:

LY,Y) = %ZZw(z’,j)(YU —Y;)? (3.10)

where L(Y,Y) is the loss function, Y is the ground truth image, Y is the
reconstructed image produced by the autoencoder, and H and W are the height
and width of the images, respectively. The weight function w(i, j) is defined

using a Gaussian distribution:

Y
wlig) = exp (U S U0

With (i, j.) representing the coordinates of the center of the image and o
controlling the spread of the Gaussian function. The normalization factor N,
often the total number of pixels in the image, is used to keep the loss value scale
consistent.

Incorporating the Gaussian function into the weighting mechanism allows
for a smooth transition of importance from the center towards the edges of the
image, which aligns with the goal of enhancing focus on the central areas during

the autoencoder’s training process.

3.2.6.2 Training Stages

At the first stage (Figure 3.22), the CAE is trained on regular regular events
using back-propagation to minimize the reconstruction loss. The process opti-
mizes the weights and biases to capture the regular patterns of the input data.

After the initial training, a second stage supervised training follows with
a slightly modified architecture (Figure 3.23). In this training stage, we use
the encoder part of the model along with a classification head for supervised
training.

We perform fine tuning via transfer learning using the weights from the pre-
vious training session, which can ensure the ability of the encoder to compress
critical features to the latent space to improve the robustness of our method.

The head is trained using categorical cross-entropy loss:

M

Lon == Yoclog(poc) (3.11)

c=1
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Figure 3.22: Model architecture of the autoencoder: the convolutional layers are spatial en-
coders, followed by temporal encoder and decoder. Bottleneck compress the features to elimi-
nate non useful information. At the end, we perform spatial decoding, reconstructing the input
image to the same format.
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Figure 3.23: Fine-tuning hybrid classifier: the pretrained encoder weights from the previous
stage are transferred and a classification head is added for detecting the abnormal events.
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where M is the number of classes, y, . indicates the presence of class c in
observation o, and p, . is the predicted probability of class ¢ for observation o.

The two-phase training strategy of the CAE allows the model to be capable of
distinguishing irregular changes in the sequences and then to identity deviations
from this baseline as anomalies. The integration of ConvLSTM2D layers enables
the model to capture temporal dependencies in addition to the spatial features
learned by the Conv2D layers. This method provides a robust approach to

anomaly detection in video sequences.

3.2.7 Overhead Object Detection

Side cameras, while useful for capturing object details, have a limited field of
view and are prone to occlusions, making them less effective for comprehensive
object detection. Overhead cameras, on the other hand, offer a wider field of
view, minimizing occlusions and providing a more comprehensive perspective
of the scene. This makes them ideal for detecting and tracking multiple objects,
especially in crowded or complex environments. Additionally, the consistent
perspective of overhead cameras simplifies the comparison of object positions
and movements across different frames. Due to these advantages, we prioritized
overhead cameras for our object detection system, ensuring greater accuracy
and reliability, particularly in scenarios where monitoring large areas or tracking
multiple objects is essential.

Inspired by RAPiD [104], the detection network consists of three stages: the
backbone network, the feature pyramid network (FPN), and the bounding box
regression network. The backbone network works as a feature extractor that
takes an image as input and outputs a list of features from different parts of
the network. In the next stage, we pass those features into the FPN, in order
to extract features related to object detection. Finally, at the last stage, a CNN is
applied to each feature vector in order to produce a transformed version of the
bounding-box predictions (Figure 3.24).

As presented in the diagram above, the backbone of the network is respon-
sible for the initial feature extraction and is typically a pre-trained CNN such as
ResNet, VGG, or a similar architecture. More specifically, given an input image
I, the network produces a set of multi-dimensional feature maps { P, };_, at dif-
ferent scales, denoted as P;, %, and P; for high, medium, and low resolutions,

respectively, as follows:
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Figure 3.24: Overhead object detection model architecture. Each arrow represents multiple
convolutional layers, and the colored rectangles represent multi-dimensional matrices, i.e., fea-
ture maps, whose dimensions correspond to an input image of size hxw = 1024x1024.

P, = Backbone(I), k € {1,2,3}

The FPN enhances the backbone’s feature maps by integrating high-level se-
mantic information from deep layers with spatial information from earlier layers
based on Eq. (3.2.7). This choice was made due to the significant variations in
object sizes due to the distortion of the wide-angle fisheye lenses. FPN’s multi-
scale feature representations allow for effectively detecting both passengers in
the center, who appear larger, and those who appear much smaller due to the
peripheral distortion. This is achieved by upsampling spatially coarser, but
semantically stronger, feature maps from higher pyramid levels and merging
them with lower-level maps through element-wise addition.

PP = FPN(P,), k € {1,2,3}

Post feature enhancement by the FPN, the detection head predicts the trans-
formed bounding boxes and class scores by applying a separate CNN to each
FPN feature vector to generate a transformed bounding box predictions T} and
an objectness score, which are relatively parameterized to anchor pre-defined

boxes at different scales and aspect ratios, as follows:

tyJﬂ = Sk(j -+ Slngld(fy,k))

tw g = Wi exp(fu k)
th,k — hznchor exp(fh,k)
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oy, = Sigmoid(f, )

where i and j represent the center of the anchor box, s; is the stride of the
feature map at scale k, and f.x, fyi: fwk, fnk, for are the outputs of the CNN
applied to the feature vector from the FPN. The variables wih°r and hanchor
represent the width and height of the k-th anchor box, and Sigmoid is the
logistic function applied to constrain the outputs to a range between 0 and 1.
The objectness score o0, denotes the probability that an object is present within
the predicted bounding box. The training loss function of the network combines
the regression loss for the bounding box coordinates and a classification loss for

the objectness score.

3.2.71 Rotation-Aware Bounding Box Regression

The rotation-aware bounding box regression is a critical component of the pro-
posed method, enabling the detection of people in overhead fisheye images with
a high degree of accuracy in both position and orientation by incorporating a
novel angle prediction mechanism that accounts for the unique properties of
angles as cyclic quantities. It involves the prediction of a bounding box’s ori-
entation, along with its center and size, which are normalized relative to the

feature map dimensions as follows:

N
Lyeg = Z(AcoordSCaleLl(bi, ZA)Z) + AanglePeriodicy,, (6;, GAZ)) (52)
i

Here, L,., represents the regression loss, b; the predicted bounding box, ZA),-
the ground truth box, 0; the predicted orientation, and éi the ground truth ori-
entation. The terms Scale;, and Periodic;, are the scale L1 loss and periodic L1
loss, respectively, with A.orq and Agpge as the balancing weights. This allows the
network to effectively learn the orientation of objects, taking into consideration
the periodic nature of the angle, thus providing a more robust and accurate

object detection in fisheye images.

3.2.7.2 Scale-Invariant Loss Function

To address scale variance in object detection, particularly for fisheye images, we

propose the integration of a scale-invariant term in the loss function that aims to
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stabilize the learning across different object sizes, a common challenge in fisheye
image datasets due to perspective distortion. The scale-invariant loss term Lgce

could be formulated as follows:

1L 1
Lcate = N ; Wil ob] 017 Oz) (53)

where N is the number of objects, w; and h; are the width and height of the
bounding box of the i-th object, Ly is the objectness loss for the i-th object, o;

is the ground truth objectness score, and ¢; is the predicted objectness score.

3.2.7.3 Angle Loss Function

The angle loss is crucial for the model’s ability to learn the orientation of objects,
a fundamental aspect when dealing with fisheye images. It ensures accurate
angle predictions for bounding boxes by incorporating binary cross-entropy
(BCE) for foreground-background classification with a specialized term for angle

regression as follows:

angle - ZBCE o(Las ycls)
+ ) BCE(0(tob)), Yoby) (3.12)

+ Z )\9 periodic 6p7 99)

where Lgnge is the composite loss for classification and angle prediction, o
the sigmoid function, ¢, the class logits, Z.,; the objectness logits, yas and yy; the
class and objectness labels, Ay the weight for angle loss, Lperiodic the periodic angle
loss, 0, the predicted angle, and 60, the ground truth angle. This harmonized
loss function facilitates the network to learn not only the presence of an object,

but also its precise rotational alignment.

3.2.7.4 Periodic Angle Prediction Loss

The periodic angle prediction loss mitigates angle discontinuity by employing
a periodic loss. The network learns to effectively predict angles in a rotation-

invariant manner, which is critical for maintaining consistency when angles form
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a full circle.

Lperiodic(gpa eg) = Il?el% f(gp - 09 + 27Tk)

Here, 0, is the predicted angle, 0, is the ground truth angle, and f is a distance
metric, such as the L2 norm. The loss function ensures smooth transitions across
the angle boundary, effectively treating angles 2 radians apart as equivalent.
The minimization over k accounts for the multiple equivalent representations
of the same angle due to periodicity, thereby encouraging the network to learn

angle predictions that are robust against rotational variances.

3.2.8 Facial Identification

Facial verification offers a robust and secure method for confirming an individ-
ual’s identity, gaining traction due to its non-intrusive nature and high accuracy.
Among the various techniques, we chose Siamese networks for their unique ad-
vantages in facial verification. These networks excel in learning a similarity
metric between image pairs, making them ideal for verification tasks. Their
architecture, consisting of two identical subnetworks sharing weights, enables
effective learning of discriminative features that distinguish between individuals
while being robust to variations in pose, lighting, and expression. Additionally,
Siamese networks require fewer training examples compared to traditional mod-
els, making them suitable for scenarios with limited labeled data. In the context
of facial verification, Siamese networks have demonstrated superior performance
in accurately determining whether two face images belong to the same person.
Their ability to learn robust representations and compare them effectively makes
them a compelling choice for enhancing security and user experience in various
applications.

The process begins with two input images, Input A (the database image)
and Input B (the image cropped from the video stream). These images are pre-
processed and then fed into a shared backbone feature extractor. The backbone
used here is the same CNN feature extractor implemented in ArcFace, with one
modification: the last fully connected layer and the preceding flatten layer are
replaced with a 1 x 1 convolutional layer to accommodate the zC'os module.

The core of the system lies in the Lcos calculation using the xCos module.

This module calculates patch-wise cosine similarities between the feature maps
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Figure 3.25: Two facial images are processed by a feature extractor to extract features. The
features undergo two parallel processes: a) grid-based cosine similarity, measuring facial feature
similarity in corresponding grid cells, and b) an attention mechanism, emphasizing relevant
facial regions. The results of these processes are combined and summed to calculate a loss
value, which assesses the accuracy of the system in determining if the two faces belong to the
same individual.

generated by the backbone for both input images. These similarities are then
element-wise multiplied by attention maps. The resulting values are summed
up to compute the final Lcos, a metric representing the overall similarity between
the two input images.

As current face verification models use fully connected layers, spatial infor-
mation is lost along with the ability to understand the convolution features in a
human sense. To address this obstacle, the plug-in zC'os module is integrated

as described below and presented in Figure 3.25:

e Input: The two input images are preprocessed and passed into the feature
extractor. The Input A is the database image while the Input B is the image

cropped from the video stream.

¢ Backbone: We implement the same CNN feature extractor as in Arc-
Face [18]. However, in order to employ the xCos module, the last fully
connected layer and the previous flatten layer are replaced with a 1 x 1

convolutional layer.

* Lcos calculation (zCos): Patch-wise cosine similarity is multiplied by the

attention maps and then summed to calculate the Lcos.
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3.2.9 Audio Classification

Audio surveillance plays a critical role in detecting anomalies, as sound often
provides valuable clues about ongoing events. However, the vast amount of au-
dio data generated by surveillance systems necessitates automated methods for
detecting abnormal events. Audio classification for abnormal event detection ad-
dresses this need by enabling machines to recognize and categorize sounds, dis-
tinguishing normal occurrences from potentially dangerous or unusual events.

In this Section, we will describe the CNN architectures used, the optimizer
that was selected and the activation function between the convolutions and max-
pooling operations. CNNs are known to perform well in image classification
and have achieved similar results in the field of audio-based event detection. In
general, the input image is passed through various convolutional layers, before
it is flattened and fed to a fully connected neural network that outputs the
probabilities of the target classes.

Initially, the image is passed through a convolutional layer, which is meant to
reveal the structures and shapes in the image. The way that this is performed is
to introduce a filter that slides over the entire image and multiplies with all the
pixels (with overlap). Every time the filter is multiplied with a set of pixels, we
sum all the multiplications and add the value to an activation map (convolution
operation). The activation map is completed after the filter is multiplied with
the entire image. A typical filter has dimensions of 16x16 or 32x32, depending
on the shape of the input image. It is important in this case, to choose a filter
that is large enough to cover all the structures of the image. A pooling layer
is a way to reduce dimensionality of the representation (down-sampling) such
that there are not many parameters that need optimization, but it also helps
to control overfitting. The activation map is divided into regions of equal size
and represents each region with one single number. Max-pooling is one of the
most popular pooling techniques, which just represents each region with the
largest number in that region. However, it is possible to use average pooling,
global pooling, etc. To increase the stability of a neural network, batch normal-
ization normalizes the output of a previous activation layer by subtracting the
batch mean and dividing by the batch standard deviation. Consequently, batch
normalization adds two trainable parameters to each layer, so the normalized
output is multiplied by a “standard deviation” parameter () and add a “mean”
parameter (). Dropout is widely used in neural network layers and is another

way to prevent overfitting. This layer is simple in the sense that it randomly
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Figure 3.26: Audio classification approach using a 2D Convolutional Neural Network (CNN).
A spectrogram image, representing frequencies over time, is input into the CNN. The network
processes the image through multiple convolutional layers (X1 to X4), each extracting features.
The output layer then classifies the audio into different categories: background noise, glass
breaking, gunshot, or scream.

drops out units (activation maps) in the current layer by setting them to zero.
Finally, the last part of a CNN is often referred to as a fully connected layer,
which is a regular feed-forward neural network (FNN). The output from the
other layers needs to be flattened out before it is passed into the FNN. The
activation function that is commonly used for classification is Softmax. This
activation function assigns probabilities between the target classes and the prob-
ability that is closest to one is selected. For audio classification a DenseNet-121
CNN architecture is used as seen in Figure 3.26.

DenseNets [105] were introduced in order to solve the problem of the vanish-
ing gradient in neural networks. The vanishing gradient occurs when the CNNs
become big that the path for information from the input layer to the output layer
significantly increases that the gradient vanishes during back-propagation. In
DenseNets, we connect every layer directly with each other. This process en-
sures maximum information kept throughout the architecture. Additionally,
by using this connection the DenseNets require fewer parameters to train than
vanilla CNNs, since there is no need to learn redundant feature maps.

The DenseNet-121 was used for classification, as the most basic DenseNet yet
powertful architecture. Each dense layer consists of two convolutional operations

as follows:
e 1x1 Convolutions (for feature extraction)
e 3x3 Convolutions (bringing down the feature depth/channel output)

The DenseNet-121 consists of six such dense layers in a dense block. This

resulted in approximately seven million parameters, compared to the 44 million
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parameters of a vanilla CNN architecture.

After the non-linear function describing the dataset is found, one typically
wants to find the minimum or maximum to optimize various parameters. In
order to perform that there are numerical optimization methods. In our exper-
iments, we have used the Adam optimization method with an initial learning
rate of 0.001. Adam is often the preferred optimization method in machine
learning, due to its computational efficiency, little memory occupation and im-
plementation ease. Adam is a momentum-based method that only relies on the
first derivative of the cost function. Required inputs are exponential decay rates
B1 and B2, cost function c¢(0) and initial weights 0, in addition to the learning
rate v, and eventually a regularization A. Iteratively, the gradient of the cost
function is calculated and this is used to calculate the first and second moment
estimates.

The activation function is used to activate the outputs, which often need
to take some certain properties. For example, when doing classification, the
outputs are probabilities and therefore take values between zero and one. A
nonlinear activation function is often preferred to reinforce the non-linearity of
the neural network. Traditionally, the logistic function and the tanh function
have been used as activation functions, since they were believed to work in
the same way as the human brain. However, in 2012 Alex Krizhevsky et al.
introduced AlexNet [106], taking image recognition to a new dimension. They
used a ReLU function, which is zero for negative values. The ReLLU function is
a modification of the pure linear function for positive values. This makes the
function able to recognize the non-linearity in the model, providing it a “clean”

derivative given by the step function.

3.3 Framework Architecture

For our development platform, we selected the NVIDIA Jetson AGX Xavier
due to its unique combination of high-performance computing capabilities and
energy efficiency. Its powerful GPU and specialized Al accelerators enable us to
run complex DL models in real-time, meeting the computational demands of
our object detection and classification tasks. Moreover, the Jetson AGX Xavier’s
compact form factor and low power consumption make it ideal for deployment
in edge devices, allowing us to process data directly on the device without relying

on cloud-based resources. This not only reduces latency but also enhances
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privacy and security. Additionally, the Jetson AGX Xavier’s extensive software
support, including the JetPack SDK and various DL frameworks, streamlines
the development process and facilitates seamless integration with our existing
workflows.

Although optimized for the NVIDIA Jetson platform, our system is adapt-
able to similar hardware configurations, requiring at least a GPU with CUDA
support, 16 GB RAM and 32 GB disk space. Software prerequisites include an
Linux-based Ubuntu OS, Python and OpenCV. The installation process involves
system package installations, building the v4]12loopback [107] device for creating
virtual camera devices and installing necessary Python packages. The structure
comprises various directories for assets, common code, service modules, shared
modules, utilities, a configuration file and a launcher script. The configuration
settings are adjustable in the config.py file, which includes constants like shared
modules, service modules, vehicle ID, camera sources and parameters for dif-
ferent services like passenger counting, object detection and face verification.
The system is launched by spawning service modules as separate processes and
allowing inter-process communication (IPC) through the av_ipc module. The
dashboard, accessible locally or over a network, displays video feeds, audio
spectrograms, status of different modalities, event history, environmental met-
rics, passenger counts and other crucial data related to security and monitoring
in AVs. The framework is designed to be robust, adaptable and user-friendly,
catering to the complex needs of autonomous vehicle control and monitoring

systems.

3.3.1 Interfaces

Seamless interaction between software and hardware is crucial for our frame-
work. To achieve this, well-defined interfaces to hardware are essential. These
interfaces serve as bridges, enabling software applications to communicate with
and control various hardware components, such as sensors, actuators, and pro-
cessing units.

Our framework integrates an advanced hardware abstraction layer (HAL),
designed to interface seamlessly with a diverse array of sensors, thus providing a
versatile and comprehensive sensory platform. This layer functions as a crucial
intermediary, standardizing communications and data exchange between the

framework’s core processing units and various external hardware devices. This
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Figure 3.27: Framework illustration diagram for hardware acceleration of computer vision and
Al tasks. A HAL provides interface, synchronization, and standardization for the underlying
hardware. The accelerated CV modules encompass edge detection, transformations, and noise
reduction. The accelerated AI modules include activity recognition, pose estimation, object
detection, and image classification. IPC facilitates communication between the modules, and
post-processing refines the final output. Resource optimization and service feedback loops ensure
efficient utilization of the hardware resources.

89



level of abstraction not only simplifies integration, but also enhances the system’s
adaptability and scalability. For visual data acquisition, the HAL supports a
range of camera types. It is capable of interfacing with IP cameras using multiple
protocols such as RTSP, HTTP and ONVIF, ensuring compatibility with a wide
array of network-based camera systems. This flexibility allows the framework
to be deployed in environments with pre-existing surveillance infrastructure, or
in scenarios requiring remote or distributed monitoring setups.

Additionally, the HAL’s support for USB cameras facilitates plug-and-play
connectivity, making it ideal for portable or temporary setups where ease of
deployment is key. In terms of audio capture, the HAL integrates USB micro-
phones, allowing for high-quality audio recording. This feature is particularly
useful in environments where audio data provides critical context or cues, such
as in security applications or interactive systems requiring voice recognition.

Moreover, the HAL extends its support to a variety of USB sensors, en-
riching the framework’s sensory capabilities. This includes advanced devices,
including Lidar for precise spatial mapping and navigation, stereo cameras for
depth perception essential in 3D modeling or autonomous navigation systems
and depth cameras, that provide detailed environmental awareness crucial for
obstacle detection and avoidance. The inclusion of ultrasonic sensors further
augments the system’s spatial understanding, enabling applications in proxim-
ity detection and collision avoidance. The HAL’s design ensures that data from
these diverse sources is standardized into a format that is readily consumable
by the framework’s processing modules. This standardization streamlines the
data processing pipeline, facilitating efficient and accurate data analysis and
decision-making processes. Furthermore, the HAL is engineered with a focus
on extensibility and modularity. This approach allows for the easy integration
of new types of sensors as technology evolves, ensuring that the framework re-
mains future-proof. Additionally, this modular design enables customization to
meet specific needs or constraints of various applications, ranging from AVs and
industrial automation to smart home systems and environmental monitoring.

In addition to its comprehensive sensor support, the framework’s HAL incor-
porates an advanced data synchronization mechanism, crucial for coordinating
inputs from multiple sensors. This synchronization ensures that datastreams
from diverse sources, such as IP cameras, USB microphones and various other
sensors, are aligned in time, providing a coherent and unified view of the en-
vironment. This temporal alignment is vital in scenarios where the timing of

events captured by different sensors is critical, such as in security applications,

90



autonomous vehicle navigation, or complex robotic systems. The synchroniza-
tion module intelligently manages time-stamps, handles latency variations and
aligns data sequences, thereby maintaining the integrity and relevance of the
information being processed. This capability not only enhances the accuracy
and reliability of the system’s analyses and responses, but also enables more
sophisticated functionalities, including event detection and multimodal data fu-
sion, where the interplay of sensory data provides deeper insights than isolated
sensor readings.

In summary, this proposed framework’s HAL stands as a proof to modern
engineering, offering a harmonious blend of versatility, compatibility and for-
ward compatibility. It serves as a robust foundation, enabling the framework to
effectively harness the full potential of various sensory inputs, thereby paving

the way for sophisticated and intelligent system applications.

3.3.2 Streaming to Virtual Devices

The framework makes use of the v4l2loopback [107] module, which is a kernel
module for Linux, designed to create virtual video loopback devices. It al-
lows for the creation of virtual video devices that normal Video4Linux2 (v412)
applications can interact with as if they were standard video devices. How-
ever, unlike typical video devices that capture video from hardware like cam-
eras, the video in these virtual devices is provided by other applications. The
v4l2loopback module plays a crucial role particularly in scenarios requiring the
handling of multiple video streams or the integration of various video sources.
The v4l2loopback driver is employed to create virtual video devices, enabling
the manipulation and redirection of video streams from physical devices like
cameras to other applications or processes.

At its core, v4l2loopback functions as a kernel module for Linux systems,
designed to facilitate the creation of virtual video loopback devices. These vir-
tual devices act as standard video devices from the perspective of Video4Linux2
(v412) applications, but instead of capturing video from physical hardware like
a camera, they receive video data from other applications. This feature is critical
in scenarios where multiple applications need to access the same video stream
simultaneously or when the video stream needs to be processed, modified, or
redirected before being consumed by the end application. Managing and pro-

cessing the video streams from multiple cameras, especially in systems where
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multiple applications need simultaneous access, can be challenging. This chal-
lenge is where v4l2loopback and the streaming module becomes invaluable.
As the video output needs to be made available to multiple applications,
simply accessing the camera’s video stream directly would limit the stream’s
availability to a single application at a time, given the typical constraints of
video device handling in Linux environments. By using the streaming module
and virtual devices, it is possible to redirect the video stream from the RealSense
camera to these virtual devices. Other applications can then access the video
stream from these virtual devices as if they were accessing a regular video
device. This setup not only allows multiple applications to use the camera’s
output simultaneously, but also offers flexibility in processing the video stream.
For instance, one application could use the stream for real-time video anal-
ysis, while another could record the stream for later review or processing. This
flexibility is particularly useful in complex systems where different components
or modules of the system have varied requirements regarding video processing
and consumption. Furthermore, the streaming module illustrates the use of
the v4l2loopback module in conjunction with ffmpeg, a powerful multimedia
framework used for handling and processing video and audio data. In this
context, ffmpeg can be used to further manipulate the video stream, such as by
encoding, decoding, or transforming the stream before it is made available to

other applications through the virtual video devices created by v4l2loopback.

3.3.3 Inter-Process Communication

In a framework consisting of various modules running as distinct processes
within the Linux operating system, implementing effective IPC is crucial to en-
sure seamless operation and data exchange among these modules. Two primary
IPC methods are employed in this framework: shared memory and sockets, each
serving specific purposes based on their inherent characteristics and use-case
scenarios. The choice between shared memory and sockets depends on several
factors, including the nature of the data being shared, the required speed of
communication, the complexity of the setup and the need for network trans-
parency. Shared memory is typically faster, but more complex, to implement
and manage, especially with regards to synchronization and ensuring data con-
sistency. Sockets, while potentially slower due to the overhead of the network

stack, are more flexible and easier to scale across different environments and
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configurations.

3.3.3.1 Shared Memory

Shared memory is a method of IPC that allows multiple processes to access a
common memory space. It’s highly efficient for data transfer between processes
since it avoids the overhead of data being copied between the client and server,
unlike other IPC methods. In the context of this framework, shared memory is
utilized for high-speed, low-latency communication where large amounts of data
need to be transferred quickly and frequently between processes. Technically,
implementing shared memory in Linux typically involves the use of system calls
like shmget() to allocate a shared memory segment and shmat() to attach the
segment to the process’s address space. For synchronization of access to the
shared memory, mechanisms like semaphores or mutexes are employed to avoid
race conditions and ensure data integrity. Shared memory is particularly effec-
tive for applications that require rapid, real-time data processing and exchange,
such as in video processing or complex computational tasks where multiple

processes are handling different aspects of the computation concurrently.

3.3.3.2 Sockets

Sockets, on the other hand, are more versatile in terms of communication setup.
They allow for both local (interprocess) and network communication. In this
framework, sockets are used for their flexibility and ease of use, especially when
the communication needs to extend over a network or between processes that
do not share a common parent. In Linux, socket programming involves the
use of the Berkeley sockets API. This API provides a set of function calls for
creating sockets, binding them to addresses, listening for connections, accepting
connections and reading/writing data. There are different types of sockets, like
stream (TCP) and datagram (UDP), chosen based on whether reliable or fast,
connectionless communication is required. For IPC within the same machine,
UNIX domain sockets are typically used, as they are faster than IP sockets
used for network communication. These sockets use the local file system as
their address space, offering a higher performance for IPC. In a multi-module

framework like the one described, sockets offer the advantage of scalability and
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network transparency. They can handle communication between a large number
of processes distributed across different systems or within the same system,

making them ideal for distributed applications.

3.4 Chapter Summary

In this chapter, we dive into the key result of our research methodology: our
accelerated multimodal Al framework. The initial research focused on acceler-
ating fundamental image processing algorithms on FPGAs. Implementations of
color transformations, edge detection, and noise reduction techniques on both
Altera and Xilinx platforms showcased significant performance gains compared
to traditional software implementations. Notably, the chapter highlights the
transition from VHDL to High-Level Synthesis (HLS) using PYNQ-Z1, empha-
sizing the efficiency and productivity gains achieved.

Beyond preprocessing, the chapter delves into sophisticated Al models op-
timized for edge devices. Multimodal stream classification using LFR and HFR
pathways, coupled with advanced data fusion strategies, enables accurate real-
time event detection. Further, the framework incorporates pose classification,
spatiotemporal autoencoders, hybrid LSTM classifiers, and audio classification
techniques, all optimized for resource-constrained environments. Each model’s
architecture, training process, and performance benefits are thoroughly dis-
cussed.

The framework’s robust architecture, built upon the NVIDIA Jetson AGX
Xavier platform, ensures real-time performance and adaptability. The integra-
tion of a Hardware Abstraction Layer (HAL) allows seamless interaction with
various sensors, including cameras, microphones, Lidar, and ultrasonic sensors.
Moreover, the use of v4l2loopback for virtual devices and efficient Inter-Process
Communication (IPC) mechanisms like shared memory and sockets guarantees
smooth data flow and resource utilization.

In conclusion, this chapter presents a holistic solution for accelerated multi-
modal AI processing on edge devices that stems from our research methodology.
The framework’s ability to handle diverse data, its optimized Al models, and
its robust architecture renders it as a significant contribution towards enabling

intelligent real-time applications in various domains.
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Application of the Edge Computing

Framework in Public Transportation

While the theoretical and methodological foundations for our edge computing
framework have been established, this chapter marks a significant step towards
realizing its practical potential. In this chapter, we focus on deploying a real-
world solution based on our multimodal framework within the context of public
transportation and more specifically Autonomous Vehicles (AVs).

Our deployment focus on AVs stems from their demanding operational envi-
ronment and energy constraints, which align perfectly with our edge computing
methodology. AVs require real-time decision-making and responsiveness, which
our decentralized architecture and low-latency processing can deliver. Addi-
tionally, edge computing’s energy efficiency complements the battery-powered
nature of many AVs, reducing communication needs and extending their range.
This approach also enhances privacy, ensuring that no sensitive data are trans-
mitted outside the vehicle.

This deployment will serve as a crucial test-bed for evaluating the frame-
work’s effectiveness and performance in a real-world setting, providing valu-
able insights into its capabilities and limitations. By translating our theoretical
advancements into a practical application, we aim to demonstrate the transfor-

mative impact of our edge computing framework on passenger safety, system
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efficiency, and overall transportation experience.

In this chapter, a detailed description of the proposed multimodal AI frame-
work is presented in the field of automotive and public transportation. The
following sections offer the problem definition regarding the arisen concern in
passenger safety inside Autonomous Vehicles (AVs), as well as the proposed
Al framework developed specifically for augmenting passenger safety and trust

inside fully autonomous public transportation vehicles.

4.1 Problem Definition

AVs are transforming urban transportation, presenting a future where the dy-
namics of travel and mobility are radically redefined [108]. As these vehicles
start navigating streets across the globe, they also bring various potential bene-
fits, which can range from reducing the risk of accidents commonly associated
with human driving to offering cost efficiencies and improved accessibility to
transportation services [109]. By reducing travel costs and seamlessly integrat-
ing with existing mass transit systems, AVs promise to enhance the efficiency to
public transportation, thereby reshaping urban mobility.

However, alongside these promising advancements, the rapid deployment of
AVs surfaces a spectrum of contemporary concerns, primarily focusing on the
broader implications of such technologies on emerging transportation systems,
societal norms, as well as the daily lives of individuals. Notably, a central
concern is the level of automation in AVs — a debate between fully automated
systems and those retaining some degree of human control. The base of this
debate lies in ensuring passenger safety, which is a rather multidimensional
challenge encompassing physical protection and psychological comfort within
these autonomous systems.

The traditional driving experience, characterized by a human driver, pro-
vides a sense of control and reassurance. The driver not only navigates the
vehicle, but also manages unexpected situations, ensuring passenger comfort
and offering a sense of security. In contrast, AVs eliminate this element of hu-
man supervision, leading to unknown implications for safety and security within
vehicles. This raises critical questions regarding whether these automations can
ensure a comparable level of safety and security in the absence of a human
driver or effectively substitute for the safety supervision traditionally provided

by human drivers.
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In AVs, the absence of a human driver introduces various psychological and
physical safety concerns. Psychologically, passengers may experience anxiety
and discomfort when an automated system is in control. This discomfort is
increased in scenarios requiring complex, real-time decision-making, such as
navigating heavy traffic or responding to sudden road hazards. The uncertainty
about an AV’s ability to handle such dynamic and unpredictable situations can
increase passenger discomfort, especially in the absence of a human presence to
offer reassurance or intervene if necessary.

Physically, ensuring safety in AVs extends beyond preventing external acci-
dents. It involves securing an internal environment of the vehicle, particularly
in response to internal threats or emergencies. Traditional vehicles benefit from
a driver who can address situations including passenger health emergencies
or altercations. In contrast, AVs must rely on onboard systems to detect and
manage a wide range of safety-related incidents.

Addressing these safety challenges in AVs requires a comprehensive ap-
proach, encompassing the development of advanced safety systems, ensuring
reliable decision-making capabilities, building passenger trust and addressing
legal and ethical considerations. Firstly, AVs must be equipped with sophisti-
cated safety and monitoring systems, capable of not just navigating and oper-
ating the vehicle, but also attentively monitoring its internal environment. This
involves deploying an array of sensors and cameras to detect potential inter-
nal threats or emergencies, thereby ensuring a secure and safe environment for
passengers.

Secondly, the decision-making capabilities of AVs must be highly sophisti-
cated and reliable. These systems should be equipped with advanced Al algo-
rithms capable of processing extensive data to make safe, efficient and ethical
decisions in real time. The challenge lies in ensuring these systems can navigate
unpredictable and dynamic road conditions and make decisions that align with
established human safety standards.

Moreover, building passenger trust in AVs is crucial for their acceptance and
widespread adoption. This can be achieved through transparent communication
regarding the vehicle’s capabilities and safety features. Informing passengers
about the rationale behind the vehicle’s actions in real time can significantly
reduce anxiety and enhance trust in the automated system.

Finally, the deployment of AVs raises substantial legal and ethical considera-
tions, particularly concerning liability in accidents or system failures. Establish-

ing clear legal frameworks and ethical guidelines is imperative for addressing
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these concerns, ensuring accountability and providing adequate protection for
passengers. However, ensuring the safety of AVs is an ongoing endeavor that
necessitates continuous testing, evaluation and improvement.

As a result, while AVs present a promising future for urban mobility, ensuring
the safety of passengers within these vehicles is a complex and multifaceted
challenge. It requires a holistic approach involving the development of advanced
safety systems, reliable decision-making algorithms, transparent communication,
and the establishment of robust legal and ethical frameworks. As technology
continues to advance, these challenges must be met with continuous innovation
and improvement, ensuring that the safety and well-being of passengers remain
at the forefront of the autonomous driving experience.

For this purpose, the aforementioned accelerated multimodal Al framework
was developed as a way of providing a sense of security and trust to the pas-
sengers inside an autonomous shuttle by implementing novel Al algorithms.
The proposed framework can be applied in various use case scenarios, includ-
ing passenger counting, real-time abnormal event detection (passenger fight-
ing, vandalism, bag-snatching, falling down), passenger facial recognition with
masks, as well as detecting deviations from passenger proximity regulations
established during the COVID-19 pandemic. In the following subsections, an
in-depth description of the developed framework in the aforementioned public

transportation use case scenarios is presented.

4.2 Functional Requirements

The functional requirements and system specifications for the proposed mul-
timodal AI framework aimed at enhancing passenger safety and security in
public transportation are various. As mentioned in the previous section, this
framework is designed to boost the confidence of all passengers, including those
who are not fully autonomous, such as children, elderly individuals, and people
with disabilities. By doing so, it enables every passenger to utilize public trans-
portation independently, without the need for guidance or supervision from a
third party. This aspect of the framework is crucial as it not only advances
inclusivity, but also promotes the autonomy of these individuals, ensuring that
public transportation is accessible and safe for everyone.

At the core of the proposed framework is an end-to-end service built upon

advanced DL models. These models facilitate a range of functionalities, in-
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cluding passenger facial recognition and proximity assessment. Moreover, they
are capable of detecting various abnormal events such as passenger altercations,
falls, acts of vandalism and incidents of bag-snatching. The integration of these
features into the framework is pivotal for ensuring a safe and secure environ-
ment for passengers. Notably, the framework incorporates novel attention-based
techniques in facial recognition algorithms, which effectively address the chal-
lenges posed by occlusions, particularly those caused by medical face masks.
This adaptation is especially relevant in the context of ongoing health concerns
and the increasing prevalence of face masks in public settings.

Another critical aspect of the proposed framework is its deployment on em-
bedded devices within AVs. Given the nature of these devices, power con-
sumption is a significant consideration. To address this challenge, the proposed
framework includes smart techniques, including adaptive inference, which op-
timize power usage without compromising on performance. This approach not
only ensures the efficiency and sustainability of the system, but also maintains
its effectiveness in real-time environments.

In terms of data acquisition and quality enhancement, the framework intro-
duces specialized overhead cameras designed specifically for the AV environ-
ment, in addition to the conventional side cameras. The incorporation of these
overhead cameras is a strategic decision aimed at capturing a more comprehen-
sive view of the interior of the shuttle, thereby enhancing the system’s ability
to monitor and analyze activities within the vehicle. This improvement in data
quality is essential for accurate event detection and contributes significantly to
the overall effectiveness of the system.

A distinctive feature of the proposed framework is its multimodal nature,
combining both video and audio analysis. This integration facilitates a more
robust and effective crime detection mechanism, significantly enhancing pas-
senger safety. By leveraging the complementary strengths of video and audio
data, the system can identify a wider range of abnormal events with greater
accuracy. For instance, audio analysis can detect sounds indicative of distress
or confrontation, which may not be visually apparent. Similarly, video analysis
can identify visual cues of potential security threats. This multimodal approach
ensures a more comprehensive surveillance and monitoring system, offering a
higher level of security to passengers inside the shuttle.

In summary, the proposed approach based on our multimodal AI framework
is a comprehensive system designed to enhance passenger safety and security

in public transportation. Its focus on inclusivity and independence for all pas-
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sengers, combined with advanced DL models for facial recognition and event
detection, makes it a cutting-edge solution. The consideration of power con-
sumption for deployment on embedded devices, the introduction of specialized
cameras for improved data quality and the fusion of multiple modalities of
video and audio analysis for enhanced crime detection, all contribute to its ef-
ficacy and relevance in the current transportation landscape. This framework
represents a significant step forward in the use of Al for public safety and se-
curity, particularly in the context of the evolving capabilities and adoption of
AVs.

4.3 In-Cabin Monitoring Services

Building upon the strong foundation of our multimodal Al framework, this sec-
tion focuses into the architecture of an in-cabin monitoring system specifically
designed for AVs. This software framework aims to further enhance passenger
safety and operational efficiency through a network of interconnected modules.
By integrating diverse functionalities such as audio and video processing, pas-
senger counting, facial recognition, and environmental monitoring, this system
offers a comprehensive solution for real-time in-cabin management. In the fol-
lowing discussion, we will explore the individual components of this framework,
their interactions, and their collective contribution to creating a safer and more
efficient autonomous transportation experience.

This work was performed at the Centre for Research and Technology Hellas
(CERTH) as part of the Horizon 2020 AVENUE project, which provided es-
sential support and resources for the entirety of this research. Moreover, this
research involved human subjects and the approval of all ethical and experi-
mental procedures and protocols was granted by the CERTH Ethical Committee.

The provided architecture diagram represents a comprehensive software
framework specifically designed to enhance the operational effectiveness and
safety of AVs. The framework is structured around several core components,
each serving distinct, but integrated functions, crucial for the advanced operation

of AV systems:

e The launcher acts as the central hub for initiating and managing the sys-
tem’s various modules. It is responsible for bootstrapping and lifecy-

cle management, ensuring all components are synchronized and can be
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restarted or shut down smoothly when required.

¢ The modules section includes a series of specialized sub-modules, each
tailored to perform specific tasks. Each submodule implements the ap-
proaches described in Chapter 3 and the results will be presented and
evaluated in-detail in the next sections. For instance, the av_audio and
av_video handle audio and video modalities for environment and pas-
senger interaction monitoring. The av_counting, av_facemask, av_facenet
modules are crucial for passenger detection, facial recognition, and health
regulation compliance, such as mask detection. The av_depth and av_object
are integral for occupation monitoring and luggage detection. The av_environmental,
and av_ultrasonic modules contribute to environmental data handling and

ultrasonic sensing necessary for close-range detection tasks.

¢ In the common component, modules like httpstream, interfaces, trt_engine
play crucial roles in network communication and streaming through the
Hypertext Transfer Protocol (HTTP) protocol, data allocation from sensors

and running optimized Al inference using TensorRT.

¢ The shared resources, including av_dashboard Figure (4.23), av_ipc, av_mqtt,
are essential for monitoring, internal communications and data sharing
across modules, leveraging MQTT for effective messaging and IPC for

inter-process communication.

e The Utils segment, particularly through avcap.py, manages multimedia
data capturing, which is vital for monitoring the vehicle’s environment

and engaging with passengers.

¢ The assets, managed by the script assets.sh, handle static files or resources
like configuration files or multimedia assets that are essential across various

modules.

 Finally, the config module (through config.py) serves as the central con-
figuration manager, defining settings for other modules to facilitate central
management of system behavior adjustments without altering individual

module codes.

The architecture in Figure 4.2 illustrates a robust AV system, stemmed from
our methodology, for real-time processing of multimedia data and constant en-

vironmental monitoring, emphasizing modularity and facilitating maintenance,
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Figure 4.1: The diagram illustrates a structured software architecture for the AV system. It high-
lights a central “launcher” that manages a hierarchy of modules, each referring to specific func-
tionalities like audio/video processing (av_audio, av_video), object detection (av_objdet), envi-
ronmental monitoring (av_environmental, av_thermal), and passenger interactions (av_counting,
av_facemask, av_facenet). Shared resources like a dashboard (av_dashboard) and communica-
tion protocols (av_ipe, av_mgqtt) enable inter-module coordination. Supporting components like
utilities (avcap.py) and assets (assets.sh) aid in data capture and resource management. The
config.py file centralizes system-wide configurations for streamlined management.
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updates, and continuous improvement, adapting to new challenges and reg-
ulations efficiently. The framework integrates cutting-edge Al technologies to
address operational and safety challenges effectively, enhancing passenger trust
and ensuring compliance with evolving regulatory requirements. This approach
showcases a commitment to developing a reliable autonomous transportation
solution that prioritizes safety, efficiency, and adaptability in dynamic urban

environments.

4.3.1 Abnormal Event Detection

Having explored the foundational in-cabin monitoring system architecture, we
now shift our focus to a critical aspect of autonomous vehicle safety: abnormal
event detection. AVs hold the potential to transform transportation, offering
increased safety, improved efficiency, and greater accessibility [110]. The au-
tonomous shuttles are operating without a human driver, promising convenient
on-demand transportation solutions. However, the absence of an onboard au-
thority figure dedicated to passenger well-being poses unique safety and security
risks [109]. The development of systems capable of autonomously monitoring
the shuttle’s interior and detecting potential threats in real time is crucial in
protecting passengers and enabling timely interventions when needed. Over-
head fisheye cameras offer a compelling solution for comprehensive interior
surveillance in autonomous shuttles [111]. Their wide field of view inherently
minimizes occlusions frequently encountered in confined spaces and under dy-
namic conditions, offering enhanced visibility of the passenger area.

The integration of advanced computer vision and ML techniques facilitates
the automated detection of anomalous events based on video data, contributing
to onboard safety. Autoencoders [112], are employed for anomaly detection by
learning compressed representations of normal passenger behavior from video
data. Deviations from this learned normality result in higher reconstruction
errors, indicating potential anomalies.

While autoencoders excel at detecting unseen anomalies [113], the lack of
readily available labeled datasets for anomalous events in AVs presents a chal-
lenge. Semi-supervised learning paradigms address this limitation by effectively
capitalizing on abundant unlabeled data alongside a smaller set of labeled exam-
ples, leading to improved model generalization and robustness. This approach

is particularly suitable in autonomous shuttles as collecting large amounts of
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normal operational data is comparatively simple, while incidents requiring in-

tervention occur less frequently.

4.3.1.1 Datasets

Having outlined the theoretical foundations in abnormal event detection, we
now turn our attention to the practical aspect of data acquisition and prepara-
tion. The foundation of any successful machine learning or Al project lies in
the availability and quality of datasets. These collections of data serve as the
training ground for algorithms, allowing them to learn patterns, recognize fea-
tures, and ultimately make accurate predictions or decisions. In our pursuit of
robust and reliable abnormal event detection systems for public transportation,
the collection, curation, and preparation of diverse datasets are crucial. These
datasets, spanning controlled simulations and real-world scenarios, provide the
critical raw material upon which our Al models are built, trained, and evaluated.

At the first data capture at CERTH facilities, 13 different scenarios were
simulated using two different camera perspectives for each one. The dataset
contains 6650 frames that, in conjunction with some augmentation techniques
described later, were sufficient to train the LSTM Classification via Pose Esti-
mation experiment and obtain decent results. During the second data capture
performed in TPG depot, 29 video sequences were captured with 46127 frames,
demonstrating real conditions in an autonomous vehicle. The merging of these
two datasets led to substantially better results and allowed to perform more ex-
periments. Samples from NTU-RGB [114] were dataset further included, which
helped to access the performance on unknown data and fine-tune the model
to generalize. In addition, samples from P-REACT [115] dataset were used to
verify the results and implement the spatiotemporal autoencoder.

Apart from the data captured in Figure 4.3, there are also various other
well-established datasets for anomalous activity recognition within video surveil-
lance footage, with the most prominent among them including the UCSD Pedes-
trian [116], Subway [117] and CUHK Avenue [118] datasets. However, despite
their extensive application, these datasets show various limitations, including
the simplicity of the depicted scenes, their restricted range of anomalous activi-
ties and the lack of detailed spatial annotations, that may lead to unsatisfactory
outcomes in real-world scenarios.

On the other hand, datasets such as the UCF-Crime [119] and the Shang-
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haiTech [120] offer a comprehensive collection of videos sourced from various
online platforms, recorded across multiple surveillance systems under a wide
array of environmental conditions, thereby introducing additional layers of com-
plexity. More specifically, the UCF-Crime dataset includes approximately 1900
extensive, unedited videos, evenly split between normal and abnormal events,
and covers 13 types of real-world anomalies, including, but not limited to, abuse,
burglary and vandalism. Additionally, the ShanghaiTech dataset aims to ad-
dress real-world applicability issues by including anomalies characterized by
sudden movements, like chases and fights, including 130 anomalous events
across 13 settings in 437 videos, totaling over 270,000 frames for training. It
specifically labels unusual activities such as bag snatching and unauthorized
vehicle use.

However, while the UCF-Crime dataset initially contributed video-level an-
notation, being especially useful for weakly supervised learning approaches, the
ShanghaiTech dataset has been utilized for unsupervised learning to determine
regular patterns. The availability of frame-level annotations for both datasets
facilitates the adoption of fully-supervised learning methods. The UCF-Crime
dataset, with its varied activity rate and environmental settings, is particularly
practical for anomaly detection tasks, enhancing the development of surveillance
systems operating in real-world environments.

Besides the two benchmark datasets mentioned previously, we collected a
real-world dataset (CERTH-AV) using the D-Link DCS-4625 fisheye camera with
an overhead panoramic perspective. The camera has a dome design, featuring
a 5-megapixel 1/2.5” CMOS sensor, paired with 1.37 mm F2.0 fisheye lens. It
has a maximum image resolution of 2560x1920 pixels and has Wide Dynamic
Range (WDR) support along with IR lighting for night vision. During the
data collection, several abnormal events were simulated (bagsnatch, falldown,
fighting, vandalism) with a duration of approximately 30 minutes. Moreover,
we collected regular vehicle operation, stationary or in motion, with various
lighting conditions and passengers. Table 4.1 presents some metrics about this
dataset. It is important to note that in the initial training phase of the CAE
only the regular “normal” class is used, while a subset of the class is used for
fine-tuning the hybrid approach. Consents were obtained from all passengers

contributed to this dataset for the purpose of this research.
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Figure 4.3: Dataset samples with abnormal events, which highlight the use cases. Fighting,
aggression, bag-snatching, and vandalism scenarios are illustrated. The red section contains
simulated data in lab, green section depicts captured data from TPG shuttles, blue section shows
scenarios from P-REACT dataset, and the gray section indicates additional data imported from
the NTU-RGB dataset.
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Table 4.1: Statistics of the overhead fisheye camera dataset (CERTH-AV).

Class Size (GB) Samples  Duration FPS
Bagsnatch 4.5 125 Oh 30m 40s 15
Falldown 3.9 109 Oh 26m 55s 15
Fighting 5.1 142 Oh 35m 35s 15
Normal 39.5 1098 4h 15m 20s  5-15
Vandalism 6.2 172 Oh 40m 35s 15

4.3.1.2 Evaluation Metrics

The experimental results of this work were evaluated against established bench-
marks in the field using universally recognized metrics for detecting anomalies.
To keep consistency with previous studies in anomaly detection [121], [120], the
findings are expressed through the frame-level Area Under the Curve (AUC)
to facilitate a comparison of performance levels, with a higher AUC indicat-
ing better detection capabilities. Given the challenges posed by datasets where
anomalies are rare, AUC is preferred over accuracy as it offers a more refined
assessment [122]. Additionally, the model’s ability to distinguish between dif-
ferent types of anomalies was assessed using confusion matrices (Figure 4.4)

and the accuracy metric.

4.3.1.3 Training Settings

The optimization and fine-tuning of AI models rely on a careful selection of hy-
perparameters and training settings. These parameters, often selected through a
combination of empirical experimentation and theoretical understanding, play a
crucial role in highlighting a model’s performance, accuracy, and generalization
capabilities.

To achieve peak performance, we explored the optimization of critical hy-
perparameters. We experimented with parameters such as frame-skipping, data
normalization, temporal-length, temporal-stride, and the potential benefits of
randomized runtime data augmentation for temporal sequence generation. We
also carefully examine the potential for enhancements within the deep network
architecture itself. We trained our model with a batch size of 16, a temporal-

length of 45 frames and an input image dimension of 224 x 224 with 3 channels.
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Figure 4.4: Confusion matrix across multiple categories: the diagonal represents accurate pre-
dictions and off-diagonal cells indicate false predictions. The intensity of the color corresponds
to the normalized frequency of predictions, highlighting the precision and misclassification rates

between different classes.
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To prevent overfitting, we implement dynamic frame-skipping on input videos
with a stride between 1 and 5, and random runtime augmentations are applied
on image sequences with a probability of 0.3. Train, validation, and test sets
are randomized to ensure a robust and unbiased evaluation.

Due to the large number of video data, the bottleneck of our training process
was the data loader. Operations for decompressing videos, preprocessing, image
transformations and transferring data from the CPU to GPU had a significant
performance impact on the training process. In order to maximize computa-
tional efficiency and streamline the training process, we integrate NVIDIA DALI
for accelerated data loading. This optimization ensures that our hardware isn’t
bottlenecked by data preparation. Training is conducted using the Adam op-
timizer with a learning rate of 0.0001. To harness the latest in computational
power, this training process is powered by a system equipped with the high-end
NVIDIA 4090 GTX 24GB GPU, an Intel Core i7-13700K processor, and 64 GB
of RAM.

4.3.1.4 Experimental Results

In this section, results from all three modalities (RGB, depth and audio) are
presented. Future research should consider the potential effects of fusing video
and audio modalities. Models can be fused both on decision-level and by con-
catenating their respective fully connected layers. Recent studies by Kampman
et al. [123] and Ortega et al. [124] have proven that using multiple modali-
ties combined allows interaction between them in a non-trivial way and greatly
outperforms the individual performance. By combining the last network layers
and fine-tuning the parameters, we can take advantage of the complementary

information of video and audio modalities outperforming unimodal results.

Pose Estimation

Pose estimation plays a crucial role in tracking individuals across video frames.
This involves matching poses between frames, forming pose flows, and applying
pose flow non-maximum suppression (NMS) to refine and link these flows. An
efficient online skeleton tracking algorithm, utilizing distance-based and heuris-

tic methods, was implemented to meet real-time performance requirements.
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Figure 4.5: Skeleton matching across two different frames (blended). Notice that the passenger
ID, highlighted in green at the left of each bounding box, is the same across the frames. This
allows for the tracking of individual passengers across consecutive frames.

The first important step is to match cross-frame poses and form pose flows
(tracking). Also, a novel pose flow NMS is applied to reduce redundant pose
flows and re-link temporal disjoint ones. This is an important step that associates
poses indicating the same person, across multiple frames. We implemented
an online skeleton tracking algorithm based on distance and other heuristics,
in order to meet the performance requirements of the real-time service. The
algorithm is sorting the skeletons based on the distance between neck and image
center, from small to large. A skeleton near the center will be processed first
and be given a smaller human id. Later on, each skeleton’s features will be
matched between the current and the previous frame.

The distance matrix (or cost) between the skeleton joints is the main crite-
rion for the matching function. Skeletons with the small distance are matched
between the frames and are given the same id (Figure 4.5). In some cases,
the skeleton detection framework might fail to detect a complete human skele-
ton from the image due to the restricted field of view of the camera in the
autonomous vehicle, as depicted in Figure 4.6.

This may cause some blanks in the joint positions, which should be filled
with some values in order to maintain a fixed-size feature vector for the following

feature classification procedure. We evaluated some solutions for this issue:

* Solution 1: Discard this frame. However, the algorithm would never be

able to detect the action when the person is standing sideways and not
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Figure 4.6: Examples indicating the restricted field of view for the camera sensor.

facing the camera.

¢ Solution 2: Fill in the positions with some value outside a reasonable
range. Theoretically, when the classifier is strong enough, this method

could work.

¢ Solution 3: Fill in a joint’s position based on its relative position in the

previous frame with respect to the neck.

In order to solve this issue, solution 3 was implemented, but the classifier’s
performance was degraded in some test cases. After extensive tests, we noticed
that a previous joint position might be missing too, being replaced by the esti-
mation of our algorithm. This led to “stuck” joints across various frames and
confused both the tracker and the classifier. To overcome this issue, we are
using a default “idle” pose as an example for our algorithm. When a previous
joint is missing, the value being replaced is relative to the default example pose
(Figure 4.7). We chose a person sitting as the default, because it is the most
common for the passengers in the AV.

To ensure the reliability of our feature vector for subsequent classification
despite occasional missing joint data, we implemented a comprehensive strategy
involving a default “idle” pose as a fallback. This approach helped mitigate
the issue of “stuck” joints, but it also underscored the need for dimensionality
reduction to manage the complexity of our dataset effectively. To address this,
we applied a Principal Component Analysis (PCA) procedure to reduce the 314
initial features to 50 principal components. PCA is a statistical procedure that
uses an orthogonal transformation to convert a set of observations of possibly
correlated variables (entities each of which takes on various numerical values)
into a set of values of linearly uncorrelated variables called principal compo-

nents. This transformation is defined in such a way that the first principal
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Figure 4.7: The two leg joints are being reconstructed (right) by their relative location in the
previous frame (left), despite one joint being occluded by another passenger in the current
frame.

Figure 4.8: Abnormal event detection showcasing two passengers involved into fighting. The
red bounding boxes illustrate the abnormal event.
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Figure 4.9: Model performance evaluation — (a) training accuracy and (b) training loss metrics.

component has the largest possible variance (that is, accounts for as much of
the variability in the data as possible), and each succeeding component in turn
has the highest variance possible under the constraint that it is orthogonal to the
preceding components. The resulting vectors (each being a linear combination
of the variables and containing n observations) are an uncorrelated orthogonal
basis set. PCA is sensitive to the relative scaling of the original variables. After
the PCA procedure, we achieved a sum of 0.9981% eigenvalues. The model con-
verges faster and the accuracy improves. Due to the highly imbalanced classes,
we compiled our model with a custom weighted categorical cross-entropy func-
tion for loss calculation, and a weighted categorical accuracy method in order
to acquire accurate metrics.

The quantitative evaluation performance of our model is depicted below
(Figure 4.9). After 50 epochs, our model achieved a 96.22% accuracy. The time
cost for feature extraction and classification is less than 0.05s per frame for the
classifier, since the model is relatively shallow. The model is trained end-to-end
and regularized so that it distils the most compact profile of the normal patterns
of training data and effectively detects abnormal events (Figure 4.17). After
training the hybrid model for 20 epochs, using a 64/16/20 train/validation/test
ratio the loss and the accuracy are depicted in Figure 4.16 and the final model
accuracy is 98%. Finally, we evaluated our model at the NTU RGB+D dataset
(Figure 4.10) and on the data captured by CERTH inside the AV’s shuttle
(Figure 4.11).

The qualitative results presented below highlight the robustness of our model
in detecting abnormal events across various scenarios. In the images there are

various debug layers enabled, such as skeleton points, lines, tracker id and
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Figure 4.10: Evaluation on test data: (a), (b), (c) Abnormal event detection (violence/passengers
are fighting) using different camera angles from the NTU-RGB dataset. Dots represent the
detected keypoints.

Figure 4.11: Evaluation on test data: (d), (e) Detection of fighting/bagsnatch real-world scenarios
inside the shuttle.
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Table 4.2: Precision, Recall and F1-score metrics for the two classes.

Precision Recall F1-Score Support

Normal 0.99 0.99 0.99 1208
Abnormal 0.93 0.95 0.94 147
Accuracy 0.99 0.99 0.99 1355
Macro Avg 0.96 0.97 0.96 1355
Weighted Avg 0.99 0.99 0.99 1355

| People fighting

Figure 4.12: UCO1 (fighting event) — a petty crime takes place in the form of assault. Green
boxes represent normal events, while red boxes (as in the picture) showcase abnormal behavior.

bounding boxes of each detection. The predicted result is marked as green, when
the classifier indicates it as “normal” and red when “abnormal”, correspondingly.
So far, we did not include NTU dataset samples in our training set, so it is
safe to assume that our model can generalize across different people and view
angles. In the following Figures 4.12-4.15, we present some results on each use
case. Finally, the respective classification results and metrics for each class are
presented in the following Table 4.2.

The effectiveness of our model in real-world applications is demonstrated
through several use case scenarios, each highlighting the system’s ability to
detect and respond to abnormal events with high accuracy. During a shuttle ride,
if a petty crime such as assault (Figure 4.12) or attempted bag snatching (Figure
4.13) occurs, the system identifies the event and sends a security alert to the
operator or security supervisor. The operator then decides on the appropriate
course of action, which could involve stopping the shuttle or notifying passengers
via the radio system. In another scenario, if a young person attempts vandalism

on the shuttle, such as painting graffiti or smashing windows (Figure 4.14),
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Figure 4.13: UC02 (bagsnatching event) — the commuter is attacked by another person who is
attempting to snatch his bag. Green boxes represent normal events, while red boxes (as in the
picture) showcase abnormal behavior.

Graffiti painting Iqld window attack

Figure 4.14: UC03 (vandalism event)

UC03 (vandalism event) — a person attempts to perform a vandalism action in
the bus, through painting a graffiti on the windows. Green boxes represent
normal events, while red boxes (as in the picture) showcase abnormal
behavior.
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Figure 4.15: UCO04 (unaccompanied luggage monitoring) — unaccompanied luggage which re-
mains unmoved for a long time. Green boxes represent normal events, while red boxes (as in
the picture) showcase abnormal behavior.

especially during night hours, the event is detected. The system responds by
either warning the person through the shuttle’s radio system or alerting security

personnel, who may then intervene by stopping the shuttle.

Hybrid Spatiotemporal Autoencoder

Transitioning from individual pose estimation to understanding broader scene
dynamics, we now present the results of the hybrid spatiotemporal autoencoder
model. This model analyzes and predicts patterns of movement and interaction
within the video frames, providing a deeper understanding of the unfolding
events.

The training graphs in Figure 4.16 illustrate the training/validation loss and
accuracy of the hybrid classifier over 20 epochs. The left graph shows the
model loss, where both the training and validation loss steadily decrease as the
number of epochs increases. This indicates that the model is learning effec-
tively, with the loss values converging towards zero. The right graph depicts
the model accuracy, showing an upward trend for both training and validation
accuracy over the epochs. Initially, there is a rapid increase in accuracy, which
then plateaus as it approaches 1.0, showing high accuracy levels. The close
alignment of training and validation curves in both graphs suggests that the

model generalizes well to unseen data, without significant overfitting. The con-
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Figure 4.16: Train/Val loss and accuracy of the hybrid classifier, over 20 epochs.

Table 4.3: Classification results and metrics for each class.

Class Precision Recall F1-Score Support
Normal 0.99 0.99 0.99 6040
Abnormal 0.93 0.95 0.94 1335
Accuracy 0.99
Macro avg 0.96 0.97 0.96 7375
Weighted avg 0.99 0.99 0.99 7375

sistent improvement and convergence in these metrics demonstrate the model’s
robustness and effectiveness in classification tasks.

The quantitable classification results presented in Table 4.3 demonstrate the
high effectiveness of our model in distinguishing between normal and abnormal
events. The model achieved a precision of 0.99 for normal events, indicating
that it is highly accurate in correctly identifying normal instances without falsely
labeling abnormal ones as normal. Similarly, the recall for normal events is also
0.99, suggesting that almost all actual normal events are correctly recognized
by the model. For abnormal events, the precision is slightly lower at 0.93,
which means that there are a few instances where the model incorrectly labels
normal events as abnormal. However, the recall for abnormal events is 0.95, in-
dicating that the model successfully identifies most of the true abnormal events.
The F1-score, which is the harmonic mean of precision and recall, is 0.99 for
normal events and 0.94 for abnormal events, reflecting a balanced and robust
performance across both classes. The overall accuracy of the model is 99%.
The macro average values, which provide an average of the precision, recall,
and F1-scores for both classes, are also high (0.96, 0.97, and 0.96 respectively),
showing the model’s ability to perform consistently well across both classes.

Table 4.4 presents an experimental comparison of various human action

recognition methods based on a recent survey by Zhang et al. [125]. The perfor-
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Table 4.4: Experimental comparison with human action recognition methods based on the
recent survey by Zhang et al. [125]. The proposed method does not utilize depth information
from the NTU-RGB-D dataset.

Method Year NTU-RGB-D Custom dataset

[126] 2020 91.5%
[127] 2020 90.3%
[128] 2018 73.4%
[129] 2018 30.7%
[114] 2016 62.93%
[130] 2016 69.2%
[131] 2014 31.82%
Proposed 2020 71.4% 99.6%

mance of each method is evaluated using the NTU-RGB-D dataset, a benchmark
for human action recognition, and, for the proposed method, also on a custom
dataset. The methods listed span from 2014 to 2020, showcasing advancements
in the field over time.

The method proposed by Shi et al. in 2020 achieves the highest accuracy on
the NTU-RGB-D dataset at 91.5%, closely followed by Yang et al. in the same
year with 90.3%. Earlier methods such as those by Song et al. in 2018 and
Liu et al. in 2016 show moderate performance with accuracies of 73.4% and
69.2%, respectively. Notably, some of the earlier approaches, such as Yan et al.
in 2018 and Yang et al. in 2014, have significantly lower accuracies of 30.7%
and 31.82%, indicating the rapid improvement in action recognition techniques
over recent years.

The proposed method in this study, developed in 2020, does not utilize
depth information from the NTU-RGB-D dataset and achieves an impressive
accuracy of 71.4% on this dataset. Moreover, it achieves an accuracy of 99.6%
on a custom dataset, demonstrating its effectiveness and potential for specific
applications despite not using depth information, which is typically crucial for
high performance on the NTU-RGB-D dataset.

Regarding the qualitative results, we provide the preprocessed input frame
for the current moment at the bottom-left (Figure 4.18 and 4.19) for the vi-
sualization the predictions. The frame is resized from 64 x 64 and grayscale
and a mask overlay are obscuring the out-of-interest areas (road). At the right
next to the input frame, the resized output of our model is shown. The third
mini-frame demonstrates only the significant differences between the input and

the output frames with white pixels, which are then merged above the original
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Figure 4.17: Outdoor group fighting scenario on a simulated bus stop. Green metrics at top-left
indicate the current and the average regularity score. A lower regularity score indicates that
the predicted reconstruction is not accurate, since our model did not learn such an event. Note
that the current score is much lower than the average, triggering an abnormal notification.

frame for demonstration purposes. In Figure 4.20, we present some results on
each use case. Each row contains two images of fighting, bagsnatch, vandalism

and falldown events correspondingly.

Overhead Hybrid Convolutional Autoencoder

Shifting our focus from individual interactions to a more comprehensive under-
standing of scene anomalies, we now present the results of the overhead hybrid
convolutional autoencoder (CAE-Hybrid) model. This model leverages a fisheye
camera perspective, incorporating center-weighted loss and a hybrid approach
to effectively identify and analyze unusual events within the monitored environ-
ment. As Table 4.5 demonstrates, our CAE-Hybrid method exhibits promising
results in anomaly detection compared to existing approaches, particularly ex-
celling on the CERTH-AV dataset while maintaining competitive performance
on other benchmarks.

Table 4.5 presents the comparative evaluation of various anomaly detec-
tion methods based on the AUC performance across three distinct datasets:
CERTH-AV, UCF-Crime, and ShanghaiTech. These datasets are benchmarks

in the domain of anomaly detection within video surveillance, each presenting
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Figure 4.18: Evaluation on UCO1 (fighting event) illustrating a group of four people involved
into a fighting scenario. The images in bottom-left side illustrate the network’s input, the
reconstructed input and their absolute difference map.
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Figure 4.19: Evaluation on UCO1 (fighting event) illustrating a group of four people injured
on the ground and running. The images in bottom-left side illustrate the network’s input, the
reconstructed input and their absolute difference map.
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Figure 4.20: Evaluation on use cases with the SlowFast algorithm. Each row contains two
images of fighting, bagsnatch, vandalism and falldown events correspondingly.
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Table 4.5: AUC results evaluation of the proposed method on the datasets of CERTH-AV and
benchmark datasets UCF-Crime and ShanghaiTech.

Work Method CERTH-AV  UCF- ShanghaiTech
crime

Sultani et al. [119] Deep MII 0.622 0.7541 -

Liu et al. [134] MLEP 0.651 - 0.768
Zhong et al. [135] GCN-C3D 0.702 0.810 0.764
Zhong et al. [135] GCN-TSNRGB 0.736 0.821 0.844
Zhong et al. [135] GCN-TSNOptical-Flow 0.718 0.780 0.841
Gianchandani et al. [136] Spatiotemporal 0.672 0.630 -

Hao et al. [137] TSNRGB+Optical-Flow 0.724 0.812 0.967
Shreyas et al. [138] AC-MIL - 0.798 -
Zaheer et al. [139] Binary clustering 0.721 0.782 0.841
Dubey et al. [140] DMRMS - 0.819 0.685
Majhi et al. [141] Two-level attention 0.741 0.821 -
Ullah et al. [142] CNN-BDLSTM 0.745 0.855 -

Cao et al. [132] WAGCN 0.695 0.846 0.960
Thakare et al. [143] TCC 0.756 0.844 -
Chen et al. [133] MGFN 0.732 0.869 -
Proposed method CAE-Hybrid 0.878 0.852 0.927

unique challenges and complexities. The table illustrates a notable evolution
in methodological complexity and specificity, with recent methods like Cao’s et
al. [132] in 2022 WAGCN and Chen’s et al. [133] in 2023 MGFN showcasing
significant strides in performance, particularly on the UCF-Crime dataset. This
reflects a trend towards more adaptive anomaly detection mechanisms, capable
of handling the diverse and complex scenarios presented by these datasets. Our
proposed method, CAE-Hybrid had the highest AUC of 0.878 on CERTH-AV,
alongside competitive performances on UCF-Crime and ShanghaiTech. This
suggests a robust and versatile approach, capable of overcoming the challenges
related to the overhead fisheye camera perspective due to its incorporation of
the center-weighted function loss and hybrid approach.

It is important to note that the absence of results for certain methods on our
CERTH-AV dataset, is attributed to the inability to reproduce the code for the re-
spective methods. In cases where code was not available, implementations were
based on the authors’ interpretations of the published methodologies, which
might not fully capture the original intent of these approaches. By emphasizing

the central aspects of the image more significantly than peripheral, the robust-
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Figure 4.21: Real-world installation on NAVYA autonomous minibuses: (a) inverter, (b) instal-
lation area - panel, (¢) overhead fisheye camera (D-Link DCS 4625), (d) location of the NVIDIA
Jetson AGX Xavier embedded system, (e) monitoring screen for passengers, (f) power-supply
cables hidden behind the vehicle’s panel.

ness of this method is increased by reducing false positives and focusing on core
features that are indicative of anomalous behavior, improving its sensitivity and
specificity in anomaly detection task.

Regarding the system’s deployment, it was evaluated in automated minibuses
in Copenhagen and Geneva. The solution was installed on NAVYA AVs, fea-
turing a NVIDIA Jetson AGX Xavier platform and a D-Link DCS-4625 fisheye
camera, as presented in Figure 4.21(c) and (d). The camera was connected
directly to the Jetson system via Ethernet through RTSP protocol. Both com-
ponents are powered through the vehicle’s batteries and Tensor-RT conversion
was performed to maximize the algorithm’s efficiency, reducing the power con-
sumption to approximately 10 Watts.

The validation results by Amobility (HOLO) and Transports Publics Genevois
(TPG) operators are presented in Table 4.6. As observed by the table, these
results indicate the proposed semi-supervised anomaly detection algorithm is
able to identify most of the perform scenarios (bagsnatch, falldown, fighting and
vandalism) with an accuracy of approximately 91% on real-world conditions.

Figure 4.22 demonstrates snapshots during the real-time detection of various
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Table 4.6: Number of samples validated, along with the improved accuracy and F1-Score metrics
for each class.

Class Samples Accuracy F1-Score
Bagsnatch 15 0.93 0.9310
Falldown 12 0.86 0.8800
Fighting 13 0.92 0.9240
Vandalism 15 0.94 0.9355

abnormal events in HOLO vehicle P109, route Slagelse in Copenhagen, Denmark.
For visualization purposes, activation maps are overlaid to highlight regions of
interest, denoted by red shades, where anomalous activities are detected.
Finally, as depicted in Figure 4.23, the abnormal event has also been cap-
tured in the operator’s dashboard in real-time, raising appropriate alerts for the

authorities and enhancing the overall safety and trust of onboard passengers.

Sound Analysis

Beyond visual analysis, our investigation now delves into the audio domain.
We explore sound analysis techniques, utilizing a DenseNet-121 model to clas-
sify audio signals under varying signal-to-noise ratios (SNR). Our experiments
focus on evaluating the model’s performance in classifying target sounds among
background noise, revealing its robustness and adaptability to different acoustic
conditions.

Regarding our experiments, we used a batch size of 16 images (each image
is a 3-second spectogram representation of the sound) and set the initial epochs
to 200. However, we noticed that for the DenseNet-121 only eight epochs were
sufficient to achieve the optimal performance. We applied an Early Stopping
function [144], where we checked the validation F1 macro averaged score for an
improvement in five consecutive epochs. If no improvement was detected the
network stopped the training in order to avoid overfitting.

The DenseNet-121 achieved a training F1-Score of 95.92% and a validation
F1-Score of 88.74% (Figure 4.24-a,c) for the case of 0 dB SNR. Regarding the
case of 30 dB, the DenseNet-121 achieved a training F1-Score of 96.84% and a
validation F1-Score of 91.82% (Figure 4.24-b,d). As expected, the network is
able to classify the target classes with higher accuracy in the case of 30 dB SNR

and we notice that the training loss starts at smaller values, compared to the
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Figure 4.22: Real-time detection of abnormal events with activation maps visualization in red
shades: (a) and (b) indicate a fighting event, (c) passengers falling down due to a sudden
deceleration (breaking) of the vehicle, (d) bag snatching (stealing) event.
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Figure 4.23: Dashboard showcasing a fighting abnormal event detection using the proposed
method.

case of 0 dB SNR.

There are plenty of options to tweak in a CNN. The number of convolutional
layers, max-pooling layers, filter sizes, activation functions. In our experiments,
we focus on comparing the default DenseNet-121 architecture in various SNR
settings.

Since the train and validation losses and F1-Scores are not sufficient for the
complete evaluation of the proposed framework, we evaluated the Precision (P),
Recall (R), and F1-Score (F) for each class (Table 4.7) and calculated the receiver
operating characteristic (ROC) curves for each class (Figure 4.24).

From Table 4.7 we can see that while the SNR value increases, the network
is able to distinguish the four classes more accurately. Specifically, for all four
classes, the network achieves the highest F1-Score for SNR values higher than
15 dB. The class “gun shot” is one of the most easily distinguishable, while the
“scream” class is the hardest to classify.

Regarding the multichannel spectrogram representations, a representative
sample of the variation with respect to each class and SNR in the extended
dataset is shown in Figure 4.25. It is evident that, as the SNR increases, the

features become clearer and easier to distinguish from the background, as was

128



Model F1-Score Model F1-Score

o
o

o
@

=
~

F1-Score
F1-Score

o
(=]

o
I

(a) (b)

0.4
0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16
Epoch Epoch
Model loss Model loss
2.54
—— Train = Train
- Test ::- 1504 — Test
2.0
125
1.5 / \ 1.00
] @
8 S o7s

10
0.50

0.5 |
0.25 (d)
ood 7 0.00
0 1 2 3 a 5 6 7 8 0 2 4 6 8 10 12 14 16

Epoch | Epoch

Figure 4.24: F1-Score (a) and categorical cross-entropy loss (c¢) for the 0 dB case of the
DenseNet-121 architecture. F1-Score (b) and categorical cross-entropy loss (d) for the 30 dB
case of the DenseNet-121 architecture.

Table 4.7: Precision (P), Recall (R) and F1 Score (F) metrics for the four classes at different SNR
levels.

Classes

SNR

(dB) Background Noise Glass Breaking Gun Shot Scream

P R F p R F P R F p R F

-5 79% 86% 83% | 74% 82% 78% | 89% 87% 88% | 85% 60% 70%
0 79% 86% 83% | 74% 82% 78% | 89% 87% 88% | 85% 60% 70%
5 87% 90% 89% | 86% 90% 88% | 97% 96% 96% | 88% T1% 82%
10 91% 85% 88% | 80% 94% 87% | 92% 94% 93% | 88% 87% 87%
15 89% 91% 90% | 89% 90% 90% | 99% 97% 98% | 88% 83% 86%

20 93% 89% 91% | 88% 93% 90% | 97% 98% 98% | 88% 90% 89%

25 92% 90% 91% | 88% 93% 90% | 99% 99% 99% | 89% 89% 89%

30 N% 9% 91% | 87% 89% 88% | 99% 99% 99% | 91% 89% 90%
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Table 4.8: Results (frame-by-frame) of available studies in the literature along with the results
of the current work, regarding the four classes (including the background noise) of the original
and the extended MIVIA Audio Events dataset.

Method Test Representation (I(;R) Aci;r)a Yy 1\1[;,) )R (](E‘;R) 1:‘;,)1)2

with SNR > 0 ? ? ? ? 2

SoundNet Gammatonegram 93.33 - 9.9 1.4 1.4

Proposed STFT + Mel + MFCC (Stacked)  92.5 95.21 7.28 0.22  2.59
expected.

Although the focus of the present study is mainly on multichannel spectro-
gram representation performance (as well as studying different single channel
representations) and the study of the effect of the SNR on the performance, a
comparison of different studies conducted on the MIVIA Audio Events dataset
is shown in Table 4.7.

The two common representations mentioned in the literature are spectro-
grams and gammatonegrams. The former is the traditional time-frequency vi-
sualisation, but it actually has some important differences from how sound
is analysed by the ear; most significantly, the ear’s frequency sub-bands get
wider for higher frequencies, whereas the spectrogram has a constant bandwidth
across all frequency channels. A Gammatone spectrogram or gammatonegram
is a time-frequency magnitude array based on an FFT-based approximation to
gammatone sub-band filters, for which the bandwidth increases with increasing
central frequency.

Referring again to Table 4.8, its upper part compares the results achieved by
considering the classification of positive SNR sound events only are shown. In
the lower part of the table, the results achieved by including sound events with
negative and null SNR to the above are exhibited. The average RRs for the three
classes of interest (event-based) were 92.5% and 90.9% for the original and the
extended dataset, respectively. The latter compares well with the reported value
of 90.7% in [145].

Finally, in order to test the generalizability of the selected DenseNet archi-
tecture, we tested the network under three settings. The first one with the
network trained on 30 dB SNR and tested on 0 dB SNR. The second one with
the network trained on 0 dB SNR and tested on 30 dB SNR and finally with
the network trained on 15 dB SNR and tested on 30 dB SNR. The classification
reports are summarized in Figures 4.26 — 4.28.

From Figure 4.27, we notice that the network trained in an environment

with the least noise cannot distinguish the classes in a noisy environment. On

130



Figure 4.25: Multichannel spectrograms obtained with the stacked method: the representations
of the four classes (BN for Background Noise, GB for Glass Breaking, GS for Gun Shot and S
for Scream) of the extended dataset are shown, with the SNR value increasing at the direction
of the arrow (left side) from -5 dB to 30 dB with a step of 5 dB.
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Figure 4.27: Classification report for DenseNet-121 trained on 0 dB and tested on 30 dB SNR.

the other hand, the network trained on a noisier environment (Figure 4.28) can
distinguish the classes in the quietest environment settings almost as well as the
network trained on the same environmental settings. Therefore, we notice that
our network can generalize well in clean environments when trained in noisy
ones.

Despite the classification reports and ROC curves, we used the t-distributed
Stochastic Neighbor Embedding (t-SNE) plots to further visualize the automatic
features that were learnt by the proposed 2D CNN architecture. The advantage

sification Re

cision recall fl-score support

ground Noise
Glass Breaking
Gun Shot

Scream

accuracy

Figure 4.28: Classification report for DenseNet-121 trained on 15 dB and tested on 30 dB.
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Figure 4.29: t-SNE results at 0dB.

of the t-SNE visualization, compared to a PCA, is that it uses the local rela-
tionships between points to create a low-dimensional mapping. This allows the
t-SNE to capture non-linear structure of the given dataset (raw data and learnt
features), since the neural network is learning non-linear representations of the
dataset.

Figure 4.29 shows the t-SNE visualization at 0 dB (noisy environment) and
Figure 4.30 shows the t-SNE visualization at 30 dB (quiet environment).

From the above figures we notice the randomness in the 2D space of the raw
features, in both environments and on the right part of the figures the ability
of the proposed 2D CNN architecture to distinguish between the target classes
and create clear clusters for each class.

Since there is not a public dataset with similar sound events in a shuttle
environment for in-cabin monitoring services, the proposed architecture had to
be evaluated on data collected in the HOLO test track. A small dataset, as an
initial phase, consisting of 200 3-second clips with ambient noise and 75 3-
second events with female and male screams was recorded. All 275 sound clips
were successfully classified and were not confused with glass breaking or gun
shots. Collecting real data from the latter classes was not possible in this project.
Additional details, with unseen during the training datasets, can be found in
the paper by Papadimitriou et al. [146].

Microphone distance, ambient noise and SNR are well-known challenges in
audio analysis and classification; they are factors that differentiate the latter from

fields that have proven more straightforward for image analysis. The present
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Figure 4.30: t-SNE results at 30 dB.

analysis aim was to tackle the aforementioned issues and to provide a form
of analysis that generalizes well even when background noise is high and/or
the signal of the event of interest is weak and the SNR drops to the negative

territory.

4.3.2 Automated Passenger Counting

Moving beyond anomaly detection, we now shift into the field of object detec-
tion and more specifically in automated passenger counting (APC). APC is a
crucial component for the successful integration of AVs in public transportation.
APC systems enable public transport operators (PTOs) to accurately monitor the
number of passengers on board in real time, which is instrumental in optimizing
resource allocation, such as the allocation of vehicles to routes with higher pas-
senger demand, and helping to ensure that AVs are efficiently utilized, reducing
unnecessary energy consumption and operational costs.

Moreover, knowing the exact number of passengers onboard is crucial for
maintaining safety standards, as overcrowding can lead to safety hazards and
discomfort for passengers. By employing APC, AVs can prevent overloading and
ensure that passengers travel comfortably and securely. Additionally, the data
collected by APC systems provide valuable insights into passenger behavior and
preferences, offering PTOs the ability to make decisions about route planning,

scheduling, and service adjustments, improving the overall quality of public
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transportation services. Finally, AVs equipped with APC systems can provide
real-time information about passenger occupancy through onboard displays or
mobile apps, also allowing passengers to make informed decisions about their

travel plans, reducing wait times and enhancing their overall experience.

4.3.2.1 Datasets

To facilitate the development and evaluation of our APC system, we introduce
the CERTH-AVenue Overhead Fisheye (C-AVOF) dataset. This novel dataset
has been collected and labelled, containing frames and human objects in a sim-
ulated shuttle environment, and also including challenging scenarios such as
crowded rooms, various body poses, and various-light conditions. The camera
used for the data capture process is the D-Link DCS-4625 at 1080p resolu-
tion output. During the annotation of this dataset, we used DeepSort [147] for
tracking the individual passengers in the shuttle across multiple frames and
thus our dataset can be also used for additional vision tasks using overhead,
fisheye images, such as video-object tracking and human re-identification. Also,
for evaluation purposes, some cherry-picked samples from the BOSS dataset
were included, especially the scenarios from camera 5 and 7 with the top-down

overhead perspective.

4.3.2.2 Performance Metrics

To assess the effectiveness of our APC system, we employ a tailored set of
performance metrics. Following the MS COCO challenge [5], average precision
(AP) was commonly utilized as one of the evaluation criteria, especially the area
under the Precision-Recall curve. However, due to the inherent ambiguity in
ground truth annotations, we focus on AP at IOU = 0.5 (APj), as even with a
perfect algorithm the IOU might be relatively low.

The reason behind this is the multiple bounding boxes that can exist at
various angles for the same individual and a single choice of human annotator as
the ground truth. Apart from AP, F-measure was also incorporated at a constant
confidence threshold (b..f = 0.3) as another performance indicator, which, for
a specific beont Value, corresponds to a particular point on the Precision-Recall

curve.
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Table 4.9: Statistics of the new AVOF dataset in comparison with existing overhead fisheye image
datasets. The dataset contains challenging scenarios in the vehicle’s cabin, such as crowded
conditions, occlusion scenarios, light variations and low-light conditions.

Dataset Resolution Segs # avg/max Frames FPS
HABBOF 2048 4 3.5/5 5.837 30

CEPDOF 1080-2048 8 6.8/13 25.504 1-10
AVOF 2048 32 3.8/9 14.400 15

Scenarios AVOF

Stationary 2048 7 6.0 3.150 15

Moving 2048 11 6.0 4.950 15

Crowded 2048 6 10.8 2.700 15

Edge Cases 2048 4 5.5 1.800 15

Night (IR) 2048 5 6.8 2.250 15

The choice of AP5y) was made to favor detections that are acceptable in a
practical APC application, without demanding perfect alighment. F-measure
at 0.3 provides an acceptable trade-off between precision and recall, avoiding
false negatives and minimizing false positives. Combined, these metrics offer a
robust evaluation of the model’s ability to accurately detect passengers under

the specific challenges presented by the overhead fisheye perspective.

4.3.2.3 Experimental Results

Building upon our methodology foundation, we now present the experimental
results of our APC system. The training process was initiated on MS COCO 2017
training images [5] for 120,000 iterations, followed by fine-tuning the network
on single or multiple datasets from Table 4.9 for 10,000 iterations, with each
iteration comprised of 112 images.

During training on COCO images, the network weights are updated using
Stochastic Gradient Descent (SGD) with a step size of 0.0005, a momentum
of 0.9 and a 0.0003 weight decay. The learning rate is adjusted via a decay
mechanism, reduced by a factor of 10 after every 30,000 iterations without
improvement in validation loss for optimal convergence.

For the datasets listed in Table 4.9, the standard SGD was utilized with a step
size of 0.0001, while rotation, flipping, shifting, resizing, and color augmentation

techniques were also applied during both training stages. All results presented
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here are based on a single run of training and inference. The training was
conducted on a system with an Intel Core i9-9900K CPU @ 3.60GHz, 64 GB of
system RAM and a single NVIDIA RTX 4090 GPU with 24GB of VRAM.

Table 4.10 provides a comparative analysis of our method with other com-
peting algorithms. To evaluate AA and AB algorithms from Li et al. [148], we
utilize the authors’ publicly-available implementation. Furthermore, given the
absence of a predefined train-test split in these three datasets, a cross-validation
of our method was conducted, highlighting the use of two datasets for training
and the remaining one for testing, repeated so each dataset is included once as
the test set.

For instance, our method is trained on HABBOF and AVOF and tested on
CEPDOF, and vice versa for other transformations. As neither approach from
Li et al. [148] nor Tamura et al. [149] is designed to be trained on rotated
bounding boxes, for the purposes of this work, they are both trained solely on
the COCO dataset, as described in their respective papers. Moreover, Tamura
et al. employed a top-view standard-lens image dataset called DPI-T [150] for
training, in addition to the COCO dataset; however, this dataset is currently
inaccessible and thus cannot be used in this study.

Table 4.10 provides a detailed performance comparison of various methods
evaluated on three different datasets: HABBOF, CEPDOF, and AVOF. The eval-
uation is conducted on an NVIDIA RTX 4090 graphics card, which is a high-end
hardware platform for DL and computer vision tasks. The performance metrics
include the Average Precision at an IOU threshold of 50% (AP50), Precision
(P), Recall (R), and F1-Score (F), alongside the frame rate measured in frames
per second (FPS), which indicates the inference speed of each method. These
metrics collectively offer insights into the accuracy, efficiency, and speed of the
evaluated methods under different resolution settings, denoted in parentheses
next to each method’s name, indicating the input resolution scaled by a power
of two. A confidence threshold of 0.3 is used for all methods to calculate Pre-
cision, Recall, and F-measure, with test results demonstrating that our method
achieves the best performance in CEPDOF and AVOF and the fastest execution
speed at a resolution of 1024 x 1024 among all tested methods. The RAPiD (608)
method achieves the highest FPS of 52.5 at a lower resolution of 608, making
it an attractive option for real-time applications. On the other hand, the RAPiD
(1024) method showcases the best AP50 performance on the HABBOF dataset
with a score of 98.1% at a lower frame rate of 27.7 FPS. This trade-off between

accuracy and speed is a common challenge in the design and implementation
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Number of passengers [-]

Figure 4.31: Passenger count over time received from the automated data stream.

of object detection systems. The proposed method, exhibits a balanced perfor-
mance across all datasets, achieving a nearly top AP50 on HABBOF (97.9%)
and the highest scores on CEPDOF (86.1% AP50) and AVOF (92.3% AP50).
Notably, our method’s performance at HABBOF is slightly lower than RAPiD
(1024), where human objects appear in an upright pose (movement), a sig-
nificant observation since people walking or standing typically exhibit radial
orientation in overhead fisheye images. Our method also demonstrates a HFR
of 29.1 FPS, indicating its efficiency and suitability for applications requiring
both high accuracy and real-time processing.

The system was evaluated on automated minibuses in Copenhagen and
Geneva. The solution was installed on NAVYA AVs, featuring a NVIDIA Jet-
son AGX Xavier platform and a D-Link DCS-4625 fisheye camera. The camera
was connected directly to the Jetson system via Ethernet through the RTSP pro-
tocol. Both components are powered by the vehicle’s batteries and Tensor-RT
conversion was performed to maximize the algorithm’s efficiency, reducing the
power consumption to approximately 10 Watts.

The in-shuttle operator on site has already manually been counting passen-
gers using the operator app; hence, validating the APC has been done through
comparison with data received from the operator’s phone data stream (Figure
4.31 and Figure 4.32).

In Figure 4.33, the manual passenger count is seen to the left, where each
person getting on the shuttle is entered as 1s in the data stream. Within the

same minute as the operator manually counts the 4 entries, the data stream

139



Number of passengers [-]

Figure 4.32: Passenger count over time received from the driver’s (manual counting) data
stream.

received from the Jetson increases to a count of 5 passengers (4 passengers and
the operator).

After comparing all data points received within a real-world operation, the
accuracy of the count was further investigated. Only the times where data from
our automated approach showed more than 1 person (other than the driver)
in the shuttle were extracted and compared. The timestamp is given in UTC
time, meaning the actual time was (Copenhagen summer time) 2 hours ahead.
By visually comparing the two data streams in Figure 4.31 and Figure 4.32,
we could see that patterns indicate a similar count of passengers. Initially, an

appropriate algorithm to determine the total number of passengers on board

Row . timestamp ) passengers .
68 2022-07-26 12:22:39.253144 U... 5
Row ~ timestamp qty | 69 2022-07-26 12:21:39.427374 U... 5
y y 4
7 - 20:47.
n 2022-07-26 12:20:09.609000 U... 1 - il el .
n 2022-07-26 12:20:15.349922 U... 4
12 2022-07-26 12:20:08.858000 U 1
72 2022-07-26 12:19:45.832723 U... 1
13 2022-07-26 12:20:08.487000 U.. 1

73 2022-07-26 12:18:58.261609 U...

14 7-26 12:20:08.251000 U... 1
Cta 74 2022-07-26 12:18:51.749958 U... 1

75 2022-07-26 12:18:19.611659 U... 1

Figure 4.33: Data from BigQuery: four passengers are getting on the shuttle. In the right-
side the manual count from the operator’s app is depicted with data points received when
state changes (button is pushed in the shuttle). In the left side the data points are received
continuously from our automated method. The count includes the on-board operator.
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Figure 4.34: Results from the proposed method (left side) and [104] (right side). The proposed
method detects correctly the two passengers that are partially occluded.

was developed that counted only the increases in passenger numbers. However,
the oscillating nature of the automated counting data results in a higher total
passenger count, combined with the occasional inaccuracies in the exact number
of onboard passengers, which pose an ongoing challenge. A post-processing
filtering method would help mitigate the error.

Based on all of the aforementioned information, the main findings of this
study suggest that our approach can be successfully implemented across both
simple and challenging tasks, while simultaneously maintaining high computa-
tional efficiency. Furthermore, it was found that the network’s performance is
enhanced when the input image resolution is increased to 1024 x 1024, at the
expense, however, of doubled inference time. Sample results can also be seen for
the three datasets in Figure 4.34, demonstrating nearly flawless detection across
various scenarios, including diverse body poses, orientations, and backgrounds.

However, certain scenarios, such as images of people on a projection screen,
low-light conditions, and hard shadows, continue to pose challenges. Our study
encounters the challenge of false positives as Figure 4.35 illustrates. The algo-
rithm, while adept at identifying individuals with a high degree of accuracy, as
denoted by the green bounding box, also exhibits some erroneous classifications.

An indicative example is the detection of a non-human object - specifically,
a piece of cloth - as a person, highlighted by the red bounding box. Such
false positives are not only statistical outliers, but also highlight the complexities
that these algorithms must navigate. The discriminative power of the algo-
rithm could be tuned to differentiate between human figures and objects similar
in shape or size to mitigate the incidence of false positives and enhance the

robustness of the detection system in diverse operational environments.
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Figure 4.35: Illustration of a false positive: the green bounding box represents a correctly
identified individual, whereas the red bounding box indicates a false positive detection by the
algorithm, misidentifying a piece of cloth as a person. This example highlights the challenges in
discriminating between actual human figures and objects with similar form factors in complex
visual scenes.

Figure 4.34 illustrates a real-time testing scenario, showcasing a comparison
between the proposed method (left side) and [104] (right side) in a crowded
scenario, as captured through the fisheye-lens camera. The proposed method
correctly detects the two passengers that are partially occluded.

On the other hand, Figure 4.35 illustrates both a correct and a false positive
scenario, where the green bounding box successfully identifies a real person, ac-
curately detecting their presence as they stand near the entry point, whereas the
jacket included in the red box is falsely identified as a passenger. This misiden-
tification underscores a significant challenge faced by detection algorithms for
distinguishing between humans and inanimate objects with similar size or shape,
especially when viewed from unconventional angles in complex visual scenes.

Finally, Figure 4.36 illustrates a sequence of extreme and rapid lighting
variations caused by shadows and the vehicle’s motion. This is a perfect example
of a delayed exposure adaptation from the camera sensor, despite featuring
WDR. The sudden change in slide 3 results in blown highlights in the image,
blending the person’s appearance with the vehicle color. This loss of detail
results in a failure in the detection of the passenger.

In Figure 4.37 and Figure 4.38, we can see additional visualized results on
unseen scenarios from the BOSS dataset, representing a safe distance between

onboard passengers in the shuttle. The blue bounding boxes indicate the de-
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Figure 4.36: Light variations can cause loss of detail in the camera stream, especially without
WDR capable sensors.
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Figure 4.37: Results on unseen scenarios from the BOSS and HOLO+TPG datasets. Green lines
represent a safe distance while red lines an unsafe one.

tections, and the numbers represent the confidence of each detection. Red lines

denote an unsafe distance while lines in green a sufficient distance.

4.3.3 Face Identification

Transitioning from APC and object detection to individual identification, we now
focus on the development and implementation of a face identification service.
In the following sections, the research, involving algorithms and experiments
conducted, is presented for the face identification service. As depicted in Fig-
ure 4.39, the first layer of sensors connects to the Hardware Abstraction Layer
(HAL). The HAL implements the IP and the USB protocol supporting IP and

USB cameras respectively, but also can request raw data by the API endpoints in
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Figure 4.38: Results on an unseen crowded scenario from the BOSS dataset, with overlapping
detections.
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Figure 4.39: The diagram illustrates a video analysis and person identification system archi-
tecture. The system consists of three main components: Sensors, a HAL, and Analytics. The
Sensors component captures video data from USB and dome cameras, while also receiving input
from API endpoints. The HAL manages video and user input, passing the data to the Analytics
component, which performs video analysis and sends the results to API endpoints for person
identification.

order to perform face recognition. The input data is converted and transformed
in a compatible format and passed into the analytics algorithms. The prediction
is then transferred via the API endpoints into the cloud. The user has access to
the data and acts accordingly.

Given the dynamic nature of passengers in a public transportation setting,
where new faces are encountered continuously, the ability to quickly and accu-
rately identify individuals from limited samples becomes crucial. This is where
the concept of one-shot learning plays a crucial role in our face identification
system.

One-shot learning is a classification task where one, or a few, examples are
used to classify many new examples in the future. This characterizes tasks seen
in the field of face recognition, such as face identification and face verification,
where people must be classified correctly with different facial expressions, light-
ing conditions, accessories, and hairstyles given one or a few template photos.
Modern face recognition systems approach the problem of one-shot learning
via face recognition by learning a rich low-dimensional feature representation,
called a face embedding, that can be calculated for faces easily and compared
for verification and identification tasks. Historically, embeddings were learned
for one-shot learning problems using a Siamese network (Figure 4.40). The
training of Siamese networks with comparative loss functions resulted in better
performance, later leading to the triplet loss function used in the FaceNet [75]
system by Google that achieved state-of-the-art results on benchmark face recog-

nition tasks.
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Figure 4.40: Diagram of a facial verification process using a Siamese Neural Network. The
process involves comparing a reference image (Image 1) stored in a database with a test image
(Image 2) to determine if they belong to the same individual. The Siamese network takes both
images as input and produces a similarity score, indicating the likelihood of a match.

Instead of directly classifying an input (test) image to one of the 10 people in
the shuttle, this network instead takes an extra reference image of the person as
input and will produce a similarity score denoting the chances that the two input
images belong to the same person. Typically, the similarity score is squished
between 0 and 1 using a sigmoid function; wherein O denotes no similarity and 1
denotes full similarity. Any number between O and 1 is interpreted accordingly.
Notice that this network is not learning to classify an image directly to any of
the output classes. Rather, it is learning a similarity function, which takes two
images as input and expresses how similar they are. A new passenger can be
enrolled to the face recognition service using a single image of his face which
will be stored in a database. Using this as the reference image, the network will
calculate the similarity for any new instance presented to it. Thus, we conclude

that the network can predict the score in one shot.

4.3.3.1 Datasets

To train and evaluate our one-shot learning model for face identification, we

utilize a combination of existing and synthetic datasets. We used the MS1M-
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Table 4.11: Accuracy comparison between methods and different datasets indicate a significant
improvement of about 6.2% in our augmented datasets that contain face masks.

Method Training dataset Testing dataset Masks Accuracy
ArcFace MS1M-ArcFace LFW No 99.83%
ArcFace-xCos MS1M-ArcFace LFW No 99.35%
ArcFace+M MS1M-ArcFace+M LFW+M Yes 68.33%
Ours, ArcFace-xCos+M | MS1M-ArcFace+M LFW+M Yes 74.52%

ArcFace [151] dataset for training our network and the LFW [74] for the testing.
The two datasets were augmented via pre-processing to include face masks using
the MaskTheFace tool [152]. For the sake of simplicity, we name the synthetic
datasets MS1M-ArcFace+M and LFW+M, respectively.

4.3.3.2 Result Analysis

Following the technical details and experimental setup, we now present a com-
prehensive analysis of our face identification system’s performance. This anal-
ysis involves a multi-faceted approach, encompassing real-world evaluations in
operational settings, cross-validation with manual identification, and compar-
isons with existing mobile applications. More specifically, Table 4.11 shows the
testing accuracy on the original MS1M-ArcFace, LFW and the artificially created
MS1M-ArcFace+M and LFW+M, which contain additional masked samples. As
we can see, despite the minimal loss caused by the explainability module on
the original datasets, a significant improvement of about 6.2% has been accom-
plished in our augmented datasets which contain face masks.

Figure 4.41 also highlights the improvements made over the original Arc-
Face+M. The maps are generated (a) by the original ArcFace+M while (b) by
our improved model. The cosine similarity between the two faces is negative
both in (a) and (b) on the bottom half of the faces as the mask portrays differ-
ent characteristics such as shape and color. However, the attention map in our
improved (b) model indicated that the network focuses more on the upper half
characteristics around the eyes and the nose.

Figure 4.43 showcases a real-world scenario on an autonomous shuttle, run-
ning on the NVIDIA Jetson AGX Xavier. The proposed system is able to cor-
rectly identify the two passengers among a database of 20 people.

Figure 4.44 shows additional results of our improved model. The attention
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Figure 4.41: Input and maps generated by (a) the original ArcFace+M and (b) our improved
model. Although the cosine (cos) similarity is negative both in (a) and (b) on the bottom half of
the faces, the attention map in our improved (b) model indicated that the network focuses more
on the upper half characteristics around the eyes and the nose, ignoring the region covered by

the mask.

Figure 4.42: An experimental real-world demonstration running on the NVIDIA Jetson AGX
Xavier. The proposed system is able to correctly identify the passengers of the autonomous
shuttle even with their face masks on, among a database of 10 people.
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Figure 4.43: An experimental real-world demonstration running on the NVIDIA Jetson AGX
Xavier. The proposed system is able to correctly identify the two passengers of the autonomous
shuttle, among a database of 20 people.
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maps verify that the bottom parts of the face are efficiently ignored while the
upper face characteristics have the most significant impact on calculating the
similarity score.

The system was designed as a flexible and end-to-end service accessible by
an Android mobile application. In Figure 4.45, the architecture of the proposed
system is depicted. A new passenger can be enrolled to the service via the mo-
bile application, using a single image of his face. The image will be processed
and stored temporarily in a database on the cloud platform. By using this as
the reference image, the network calculates the similarity for any new instance
presented to it from the shuttle. The network can predict a similarity score in
one shot and inform the client via an API call and relevant notification through
the mobile phone. The proposed approach can be further extended to support
homeland security surveillance infrastructures in order to mitigate domestic se-
curity risks. In this context, it is envisioned to establish a highly adaptable
security framework capable of leveraging the capabilities of autonomous public

transport operators as well as law enforcement agencies.

4.3.4 Computational Efficiency

Having explored the results of various anomaly detection modalities, we now
shift our focus to the computational efficiency results of our system.

Based on our methodology foundations, the proposed multimodal detection
system is designed to operate in real time within the constraints of an embedded
system, ensuring prompt detection of critical events in autonomous shuttles.
To optimize computational efficiency, we employ several strategies. Firstly, the
CAE architecture utilizes depth-wise separable convolutions, which significantly
reduce parameter size compared to standard convolutions. Moreover, network
optimizations via tools like TensorRT enable the model to run efficiently on the
NVIDIA Jetson platform, which possesses limited computational resources when
compared to desktop GPUs.

Experimental results demonstrate that our approach achieves a processing
speed of approximately 37 frames per second (FPS) using the Performance
(MAX-N) mode on the NVIDIA Jetson AGX Xavier embedded system. How-
ever, we are restricting the processing framerate to 15 FPS accumulating a sliding
buffer of 3 seconds. The use of TensorRT optimizations (layer fusion, kernel

optimizations 4.2, quantization 4.1, and dynamic tensor memory optimization)
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Figure 4.44: Additional results of our improved model. Facial images are artificially generated
using StyleGAN [153] and post-processed to include masks using the MaskTheFace [152].
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Figure 4.45: The architecture of the proposed system. A new passenger is enrolled by the
client. A single image of his face will be processed and stored temporarily in a database and
the network will calculate similarities with current passengers. The client is informed via an
API call and relevant notification through the mobile phone.

along with a reduced processing frame rate has reduced the power consumption
to an acceptable level for the AV’s battery.

Listing 4.1: Enabling Kernel Auto-Tuning in TensorRT

| |def build_engine_with_auto_tuning(model_path):

2 trt.OnnxParser (network, TRT_LOGGER) as parser:

3 with open(model_path, 'rb') as model:

4 parser.parse (model.read())

5 builder .max_workspace_size = 1 << 30 # 1 GB

6 builder.int8_mode = True # Enable INT8 mode

7 builder.int8_calibrator = trt.Int8EntropyCalibrator2(
calibration_dataset)

8 engine = builder.build_cuda_engine(network)

9 return engine

Listing 4.2: Enabling Kernel Auto-Tuning in TensorRT

i |def optimize_kernels(network):

2 for layer in network:

3 if layer.type == trt.LayerType.CONVOLUTION:

4 layer.precision = trt.DataType.FLOAT16 # Use FP16

precision
5 layer.set_output_type(0, trt.DataType.FLOAT16)
6 if layer.type == trt.LayerType.FULLY_CONNECTED:
7 layer.precision = trt.DataType.INT8 # Use INTS8
precision
8 layer.set_output_type(0, trt.DataType.INT8)

9 return network

The NVIDIA Jetson AGX Xavier platform, running our framework, operates
at an average power of approximately 10 watts, as measured by the tegrastats

utility. The D-Link DCS-4625 fisheye camera has an average power consump-
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tion of 3.5 watts, based on the manufacturer’s specifications. The consumption
is considered as low and sufficient for real-time deployment within power-

constrained autonomous shuttles.

4.4 Chapter Summary

This chapter presented the real-world deployment and thorough examination
of the proposed multimodal framework in the field of transportation and more
specifically AVs. For this purpose, the primary safety concerns associated with
AVs have been presented, including psychological discomfort due to the lack of
human supervision and physical safety challenges inside the autonomous envi-
ronment, ultimately highlighting the importance of the proposed framework at
augmenting passenger safety and trust in fully autonomous public transporta-
tion systems.

In this chapter, an Al framework based our methodology foundation detects
and responds to a variety of safety-related incidents within AVs, showcasing the
use of advanced safety monitoring systems equipped with an array of sensors
and cameras to manage both external driving conditions and internal passenger
safety effectively. Practical applications and case studies were also presented to
illustrate how the proposed Al framework can be utilized in real-world scenar-
ios, showcasing examples including passenger counting, abnormal event detec-
tion (such as aggression or health emergencies), as well as adherence to health

regulations.
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Discussion, Future Work and Con-

clusions

In this chapter, a comprehensive discussion on the key findings of this disser-
tation, as well as its main contributions in the field of AI and edge computing
are offered. This section also presents some key extensions to enhance the ca-
pabilities and impact of the proposed accelerated multimodal Al framework for

edge computing.

5.1 Discussion

This dissertation aims to address the edge computing challenges by proposing
a novel design methodology for edge processing, leading to an accelerated mul-
timodal framework tailored for these environments. This framework enables
the execution of complex and in-depth data processing directly at the source,
leveraging novel Al models and optimizations for various applications, such as
abnormal event detection, object recognition, proximity assessment, and facial
recognition.

One of the key findings of this research is the successful integration and

fusion of multiple data modalities within the framework. By combining vi-
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sual, audio, and sensor data, the framework achieved a more comprehensive
understanding of complex scenarios, leading to significant improvements in the
accuracy and robustness of event detection and recognition tasks compared to
single-modality systems. The emphasis on hardware acceleration and software
optimization techniques effectively mitigated the resource constraints in embed-
ded devices.

These approaches demonstrate significant improvements in decision-making
capabilities, response times, and overall system performance, even with the lim-
ited resources of embedded systems. To mitigate the computational overhead
of data preprocessing, we have implemented various computational processing
designs in hardware, taking advantage of the parallelism of FPGAs. We intro-
duced a VHDL design for color transformation and Sobel edge detection, further
improved using HLS for increased efficiency. We also explored an accelerated
noise reduction technique based on image stacking, highlighting the potential
of hardware acceleration for edge processing.

The findings of this dissertation hold significant implications for the future
of Al and edge computing. By enabling efficient and versatile multimodal pro-
cessing on embedded devices, the proposed framework builds the foundation
for a new generation of intelligent systems capable of operating autonomously
and adapting to dynamic environments. This advancement promises to revolu-
tionize various industries, from transportation and healthcare to manufacturing
and smart cities.

In conclusion, this dissertation has made a substantial contribution to the
field of Al and edge computing. As Al technology continues to evolve, further
research and development in this area will lead to even more innovative and
impactful applications, shaping a future where intelligent systems seamlessly

integrate into our lives, enhancing safety, efficiency, and overall well-being.

5.2 Future Work

Building upon the foundation established in this dissertation, several extensions
as future work emerge, promising to further enhance the capabilities and impact
of the proposed accelerated multimodal Al framework for edge computing.
One key area of future research lies in exploring advanced privacy-preserving
techniques. As Al systems become increasingly integrated into our daily lives,

concerns regarding data privacy and security are raised. Investigating meth-
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ods such as federated learning, where models are trained collaboratively across
multiple devices without sharing raw data, can ensure user privacy while still
enabling effective model training and performance improvement. Additionally,
exploring techniques like differential privacy and homomorphic encryption can
further enhance data security, protecting sensitive information during processing
and analysis.

Another promising direction is the development of more robust and adapt-
able Al models capable of handling even greater data diversity and complexity.
The current framework has demonstrated its effectiveness across various modal-
ities, but as technology evolves, Al systems will encounter increasingly challeng-
ing data streams and scenarios. Exploring advanced DL architectures, such as
transformers and graph neural networks, can render the framework capable for
learning more complex relationships and patterns within data. Furthermore,
investigating techniques like continual learning and meta-learning can enable
the framework to adapt to new data types and tasks with minimal additional
training, enhancing its versatility and long-term viability.

To address the challenge of scalability in distributed edge computing envi-
ronments, future work can focus on implementing distributed training and infer-
ence mechanisms. Exploring technologies like Kubernetes and Docker Swarm
can facilitate the efficient deployment and management of Al models across
a network of edge devices, enabling seamless scaling and resource allocation.
Additionally, investigating distributed learning paradigms, such as model par-
allelism and data parallelism, can further enhance the framework’s ability to
handle large-scale data processing tasks efficiently.

Finally, the integration of the proposed framework with emerging technolo-
gies, such as AR and virtual reality (VR), presents exciting possibilities. By
combining the framework’s ability to interpret real-world data with the immer-
sive experiences offered by AR/VR, novel applications in areas like healthcare
training, remote assistance, and interactive education can be developed. This
convergence of Al, edge computing, and immersive technologies promises to
unlock new levels of human-computer interaction and create transformative
experiences across various domains.

In summary, the research presented in this dissertation serves as a base
for further exploration and development in the dynamic field of Al and edge
computing. By pursuing the aforementioned future directions, the proposed
framework can evolve into an even more powerful and versatile tool, contribut-

ing significantly to the advancement of intelligent systems and their integration
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into our lives, ultimately shaping a future where technology seamlessly interacts

with and enhances the human experience.

5.3 Conclusions

This dissertation addresses edge computing challenges by presenting a novel
design methodology for edge processing. This methodology resulted in an ac-
celerated multimodal framework tailored for edge computing, enabling complex
data processing directly at the source. The framework leverages innovative arti-
ficial intelligence models and optimizations, tailored for applications like action
recognition, abnormal event detection, object detection, proximity assessment,
and facial recognition.

This research focuses into the core of this design methodology, detailing the
specific techniques and approaches that led to the development of the accelerated
multimodal framework. It provides in-depth explanation of the AI models
and optimizations, showcasing how they were integrated to enhance processing
capabilities at the edge. The dissertation explores the various stages of the
methodology, elucidating the decision-making processes and trade-offs involved
in shaping the framework.

In this dissertation, we proved the significant advancement of edge com-
puting facilitated by the utilization of complex multimodal sensor data directly
at the source, as detailed in Chapter 4. We presented efficient AI models and
optimizations in Chapter 3, Section 3.1, and validated their effectiveness in var-
ious applications: abnormal event detection [154], [99], [155], overhead object
detection [156], proximity detection [157], and facial recognition [158]. These
approaches conclusively demonstrated that accelerated edge processing, even
within the resource constraints of edge devices, leads to significantly enhanced
decision-making, faster response times, and improved overall system perfor-
mance.

Furthermore, to address preprocessing overheads, we implemented various
computational processing designs in hardware, leveraging the parallelism of FP-
GAs, as discussed in Chapter 3, Section 3.2. We introduced a VHDL design for
color transformation and Sobel edge detection on the Altera DE2-115 [91], and
turther optimized this design using HLS on the Xilinx Pyng-Z1 [159], enabling
direct comparison of both techniques. Additionally, we investigated an acceler-

ated noise reduction approach employing image stacking with HLS [160].
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These contributions collectively highlight the potential of accelerated multi-
modal frameworks in revolutionizing edge computing, enabling real-time, intel-
ligent processing of complex data streams within resource-constrained environ-
ments.

The implications of this research extend beyond the specific applications ex-
plored in this dissertation. As edge computing and Al technologies continue to
evolve, the demand for efficient and versatile multimodal processing will only
grow. The framework developed here serves as a foundation for a new gen-
eration of intelligent systems capable of operating autonomously, adapting to
dynamic environments, and ultimately enhancing human lives. Looking ahead,
the future of Al and edge computing is continuously pushing the boundaries
of research and development. By exploring novel algorithms, and embracing
emerging technologies, we can create a future where intelligent systems are
seamlessly integrated into our world, empowering individuals, transforming in-
dustries, and shaping a more efficient, sustainable, and equitable society. The
journey towards this future begins with the work presented in this dissertation,
an evidence of the transformative power of Al and its potential to revolutionize

the way we live, work, and interact with the world around us.
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