ARISTOTLE UNHVERSITY OF THESSALONIKI
FACULTY OF NATURAL SCIENCES
DEPARTMENT OF PHYSICS

P.P.S. (MS) IN ELECTRONIC PHYSICS (RADIOELECTROLOGY)

Master Thesis

A supervised machine learning framework for
anomaly-based intrusion detection

Anastasia Chaloulakou

(10024)

Supervisors
K. Siozios, Associate Professor, Dpt. Of Physics, AUTH

M. Dasygenis, Assistant Professor, Dpt. Of Electronic and Computer
Engineering, UoWM

Thessaloniki, October 2022

Acknowledgments

| would like to thank my supervisors, mr. Kostas Siozios and mr. Minas Dasygenis, for their
guidance and support throughout the whole process of creating this thesis.

| also want to thank Dimitris Tsiktsiris, for his thoughtful advice and help.

The IT department of AUTH, and especially mr. Georgios Pallas, for their help in gathering and
preparing the traffic from the university gateway, even though that part of the project failed
to launch in the end.

Lastly, | would like to express my gratitude to my family and friends, for the years of constant
support, help and encouragement that they generously provided me with throughout my
undergraduate and postgraduate studies, and for their patience while | was ranting about

things they didn’t understand.

This thesis was partially supported by the Hellenic Petroleum Company and the Special
Account for Research Funds, through the Scholarship for Academic Excellence during the
academic year 2020-2021

Abstract

With the rapid development of networks and Internet services, network security has gained
increased momentum in the past few years. Consequently, Intrusion Detection Systems (IDS)
must adapt to the increased need for a sufficient first line of defence against the ever-evolving
threats landscape. By utilizing deep and machine learning techniques, IDSs have been focusing
on anomaly detection, but there are still challenges in detecting attacks, especially rare or
novel ones, due to the unavailability and imbalance of data. Furthermore, there are many
attacks that have not yet been discovered and analysed, and they continue to evolve every
day. In this thesis, the NSL-KDD dataset, one of the most popular benchmark datasets available,
is analysed and used in five common supervised learning classification algorithms. Despite the
simplicity of the models, they show a good performance that is almost on par with state-of-
the-art deep learning and unsupervised models, thus providing us with a coherent review of
how machine learning is used for anomaly detection and where it can go from there.

NepiAnyn

Me tnv paydaia avamtuén Twy SIKTU WV KAl TwV UTINPECLWY HECW AladLkTUou, N aodAAELd EXEL
QMOKTACEL LEYAAN WBNON Ta TEAEUTALO XPOVLA. ZUVETIWG, T ZuoThpata Avixveuonc Elofoiwyv
(XAE) mpéEmel va MPOCOPUOOTOUV OTNV QUENUEVN avAyKNn YL PO ETAPKA TIPWIN YPAUUNA
AUUVAG Tou SIKTUOU EVAVILO OTIC OUVEXWC €EEALOCOUEVEG aMENEC. Me TN Xpron TEXVIKWV
BabLac kot pNYavikng padnong, ta XAE €xouv emikevipwBel oe Asttoupylec avixveuong
AVWUOALWY, OUWG UTIAPXOUV aKOUA TIPOKANOELS OTNV avayvwplon emBéccwy, e8Ik otav
elvat mo omdvieg n kawoupleg, Aoyw tng un dabeowuotntag dedopévwy, Kal tThv avion
katavoun twv dedopévwy. EmumAéov, umdpyouv TOAAEG emIBEoell OU akopa Sev €xouv
avakaAudBel kal avaluBel, oL omoleg efeAiooovtal kabnuepvad. e autr TNV €pyacia To
naketo Sedouévwy NSL-KDD, €va amo ta 1o Stadedopéva Slabeoipa makeTa, avahUETAL Kot
EMELTA XPNOLUOTOLEITAL yla TNV AfLOAOYNOoN TEVTE MOVTEAWV TAELVOUNONG ETUPRAETOUEVNC
HNXOVLIKAC uaBnong. MapoAn Tnv amAotnTa TWV LOVTEAWY, KATAGEPVOUV VA HTACOUV OE KOAN
anodoaon, ouykplolun ue state-of-the-art ueBodwv Bablag kal pun emPAenouevng pabnong,
POoodEPOVTAC £TOL L CUVOTTTIKI) CUYKEVIPWTLIKY ETLOKOTINGN TOU TWE XPNOLUOTIOLETAL N
Unxavik padnon otnv aviyveuon avwpoAlwy, Kat mwg pmopel va efeAxBel akopa
TIEPLOOOTEPO.

Ektetapevn nepiAnydn

OL neploocotepeg Sladlkaoieg kal umnpeoieg oruepa yivovtat pécw tou Atadiktvou. H
Siktuwon €xel avamntuxBel moAL ta teAeutaia xpovia, kal Ba cuveyioel va eEellooetal, xapn
otnv eupeila edpapuoyr tou 5G Siktvou Kal TNV €peuva ou Noén yivetal oto 6G. Adyw Tou
onUavtlikou pokou mou mailouv Ta Oiktua kat To Sladiktuo otnv Kowwvia pag, n
kKuBepvoaodalela €xel yivel {wWTIKAG onuaoiag yla tnv mpootaocia twv Sedopévwy Kat Twy
OUOKEUWV Pagc. Ta Zuotuata Aviyveuong ElofoAwv (ZAE) amoteAoUV onUAVTIKO KOUUATL TOCO
™¢ aodaielac, 600 Kat Tng (dlag tng Soung Tou SIKTUoU, KABWGS UMOPOUV VAL AVIXVEVCOUV Kal
va amotpEPouv KakoBouAa TpoypAaTa KAl XpAOTEC amo To va mapafLdoouy To dikTuo, Kat
va otapatioouv dtadopa £(6n emiBéocewv mpotou anodexbouv emikivbuvec. Me t paydaia
€EEALEN TNG UNXAVIKAG LABNONG KAl TNG TEXVNTAG vonuoouvng, n doun Twv 2AE aA\&lel anod
TEXVIKEC Baolouéveg oe «umoypadec», dnAadrn mou avayvwpilouv ouyKeKpLUEVA HoTiBa
YVWOTWV €TIBECEWY, OE TILO aAPNPNUEVEG/VEVIKEUEVEC LOPDEG AelToupylag Baclopévng os
avoyvVwpLon aVwHaALWwy, oL ortoleg taglvopolv TNy kKivnon wg pucloloyikn i emikivéuvn.

Ol avwpaAleg evog diktuou pmopel va mpogpyovtal and KakOBouleg 6paoTNPLOTNTESG TOU
eEKUETAAAEVOVTAL UuTnpeoiec Owktuou, umepdoptwon amd Oedopéva, OUOAEITOUPYIKEG
OUOKEUEC KaL urtovopeuon Sladopwy mapapétpwy Tou Siktvou [1], kat urnopet va oxetilovrat
eite pe ¢ emdooelg tou (.. unepxelhion Sedouevwy AOYW KAMOLAG UTIOAELTOUPYLKAG
Hovadag tou SIKTUoU) elte pe TNV aodAAeLa (1T.X. ek TPOBETEWS UTIEPXEIALON TOU SLIKTUOU WOTE
Ol XPNOTEC va Unv €xouv TpooPacn otlg unnpeoieg). Ta ZAE pmopouUv va avixveloouv
omoLadNMOTE amokALon oo TNV GUGLOAOYLKN cUUTEPLPOPQA, YL AUTO elval KaAUTEPO amod T
KAQOOIKA CUOTHUOTA UTIOYPAPWY OTO VA AVLXVEVOUV KALVOUPLEC I AYVWOTEG EMLOEOELS, AUTO
OUWG EPXETAL LE TO KOOTOG OTL bivouv TepLocOTEPEC AavBAVOUTEC ELSOTIOLNOELG.

To NSL-KDD makéto Sedopévwy elval €va amd ta 7O CUXVA XPNOLUOTIOLOUUEVA TIAKETA
Sdebopévwy Siktuou, amod otav dnuoupynbnke to 2009 [2][3][4]. Zuvexilel pExpL onuepa va
xpnotuomole(tal otnv €peuva oav benchmark yla povtéha aviyvevong avwpoAtwy ota diktua,
OTIWG OTA TAPOTAVW ApBpa. MNa AUTO, EMPOKELTO YLa VAL EEALPETLKO TTAKETO OESOUEVWY YL TN
oUYKPLON TWV SLadOpwv LOVTEAWY TTOU SOKLUACTNKAY OE QUTHV TNV EpYAcia, yLo Lo aELomioTn
ninyn Stadodpwy eldwyv emiBeécewy kal emmedwy SuokoAlag avixveuong, TOOO OTO TAKETO TNG
ekmaideuong 600 Kal Tou eAEyXOU TwV HoVTEAwV. Emmpdobeta, ol Sladopég petaty Twv duo
QUTWV TIAKETWY TIOPEYQV ULla TILO PEAALOTIKN €lkOva NG SuvatdTnTag TWV HOVIEAWY va
Ta&lVOUNoOoUV OWOoTA TNV Kivnon tou SLkTtuou.

Y€ aUTN TNV gpyaocia, okomog eival va xpnotpomnotnBetl to NSL-KDD yia tn oUyKkpLlon EVIE amo
T o Stadedopéveg LeBodouc UNXavIKAG Habnong oe epapUoyeS Taflvounong, ol OMoLeC
elval: logistic regression, k nearest neighbours, decision tree, Gaussian Naive Bayes kot
multilayer perceptron. 'Etol, otnv evotnta 2 BploKeTAL L CUVOTITIKA ELOAYWYN OTN KUNXOVLKA
Habnon yla avixveuon avwpaAlwy, Omwc Kol cuvadng €peuva o yivetal Ta teAevtala
xpovia. Eniong, avadépovrtal ta mpoteprpata tou NSL-KDD. H evdtnta 3 mapéxel mAnpodopleg
yla Toug Tévte aAyopiBuoug mou xpnolpomolitnkay otnv epyacia. Ztnv evotnta 4, Leta T
Snuloupyla tPLWV ekdAVoEWV Tou TOKETOU Oebopévwy, €Tol WOTE va ouykplBouv Tta

Sladopetikad oevapla Taflvounong (0Aeg ol emibéoelg, duotlohoyikn/emikivbuvn kivnon, 4
katnyopleg emBeécewv), to NSL-KDD avaAUeTal kAl OTn CUVEXELA TIPOETOLUALETAL Yyl va
eloayxbel ota HOVTEAA UNXQVIKAG HaBnong. TéAog, otnv evotnta 5 to povtéha
BeAtioTomolovvtal, afloAoyoUVTAL KAl TA AMOTEAECUATO CUYKPIVOVTAL UE QUTA TNG OXETIKAG
€PELVAC, EVW OTNV EVATNTA 6 culnTtouvTal T TPORAALATA KAl OL TIEPLOPLOUOL TOGO AUTOU ToU
TEPAUATOC, OO0 KAL TNG AVIXVELONG AVWHAALWY CUVOALKQA, OTIWE Kal LEAAOVTIKH SOUAELA TTAVW
OTO QVTIKE(LLEVO.

To amoTeAEopaTa TNG EPEUVAC TTOU €YLVE TTapouatdlovtal oTny Etkdva 1, OTiou Umopouv AUEsa
va OUYKpLBoUV oL emibooelg Tou kABe povtédou. Mapatnpoupe OtL €xoupe akpifela 70 —
79%, pe efaipeon tov aAyoplBuo Gaussian Naive Bayes, o omoilog Aettoupyel pe tnv
npoUmoBeon otL Sev €xouv kabBohou e€dptnon n pia petaPAntn tou dataset amd tnv GAAn,
TIPAYHA IOV 0TNV Ttepimtwon poag dev LoxveL kaBoAou.

Models accuracy (separate training and test sets)

— Wi =
S

@

‘ . £

]

0

oo

0

o

0

accuracy (%)

S

0

T

[e=]

=

= z @ = z @ = F @ = z a = @
PP TP EEiiigils
E = i 3 e a8 < = <+ =t
LOGISTIC DECISION TREE K NEAREST GAUSSIAN NAIVE MULTI LAYER
REGRESSION NEIBOURS BAYES PERCEPTRON

BTRAINING SET W TEST SET

Ewova 1: ouvorntiko dtaypaupa tne emidoonc 6Awv Twv UoVTEAWY Taélvounonc, os oAa Tt osvapLa
katnyoplormtolinong tne kivnong Siktuou, ue xprion tou KDDTrain+ yia thv ekmalSeUan TwV UOVTEAWV
ko tou KDDTest+ yia tov EAeyyo/emaindevon

H akp(Bela autn Twv HoVTEAWY elval ouykplowun pe TNV akplBela mou METUXAVOUV LOVTEAQ
OUYYEVOUG EPEUVOC IOV YivovTtal Ta teAeutala xpovia (BA. evotnta: 5.2. Evaluation and results
compared to relevant research) mapOAO TOU OTLG TIEPLOCOTEPEG TIEPUTTWOELG EKEVWY TWV
TIPOYPAUUATWY XpNOLUOTIoLoVVTaL TIOAU TiLo oUvOeTa, peydAa kat Babid povtéAa.

Mo OUYKEKPLUEVA, OTNV TIO TPoOodatn mapouolag Soung €peuva Tou avaAlBnke
([26][27][28][29]), xpnolomOlOUVTAL HOVTEAQ TIOU TIEPLEXOUV KALVOTOWEG TEXVIKEC PBabldg
nabnong, uetaéy AaAwv convolutional kot contractive autoencoders (pu€Bodol auto-
ermBAemopevnc kal pn emPAenouevne pabnong avtiotowa), Deep Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), Long-Short Term Memory (LSTM),

UNXoVIoUol TTPOoOoOXNG, K.a.. Ekel akoua emttuyyavetal akpifela 75 — 89% avaioya pe tnv
TIEPUTAOKOTNTA TOU EKACTOTE UNXAVLOUOU KOL TNV EEQYWYH XOPAKTNPLOTIKWY TIOU EXEL UTIOOTEL
1o dataset.

Muag Kat poKeLtal yia tooo dtadopetikol Babouc kal katwvotoplag uebodoug, pe AemTopepn
Behtiotomoinon og MoAAA otddia, n SIKA Hag €peuva, TTOU EYLVE HE TIOAU TILo amAd Héoa Kal
TEXVIKEG KAl OpwG Bploketal oe anmodoon kovtvn e To state of the art, unmopet va amoteAéoel
Lo OLELOTILOTN MEAETN TWV BACIKWY AUTWV HEBOS WV TaLlvONoNG TToU XpNoLLOTIoLRBnKay, tPog
olyKPLoN HETAEL TwV aAyopBuwy, Twv SLadopeTKWY KATNYOPLWYV Kivnong, Kat avaAuon Twv
LUNXQVIoUWVY AELToupyiag Touc.

H avixveuon avwpaAlwy Kol yevikotepa n KUBEPVOAOoHAAELA AVTILETWTTZEL AKOUA TTIOAEC
TIPOKANCELC. AVadOPLKA, LEPLKEG OO AUTEG Elval:

- Hpaydaia avantuén twy Siktuwy onfuepa, n omoia odnyel o avénon Twv KavoupLwv
KOl QYVWOTWY ETIOECEWY TIOU EKUETAAEVOVTOL KALVOUPLO KEVA KAL UTINPEDLEC.

- H oMo kal peyaAutepn e€aptnon ¢ Kowwviog pag ano to Atadiktuo, oto omnoio kabe
XpOvo Tapdyovtatl kat Olakvouvtal ToAU Teplocotepa dedouéva, noén Suokola
EMELEPYAOLILA UE TA ONUEPLVA LEDA.

- To Awadiktuo twv Avtikelpévwy (Internet of Things — 10T), Adyw TOU OMoOlOU CUOKEUEC
Olo kol xaunAotepou emumedbou, Apa KAl HE OAO KoL ALYOTEPEG UTIOAOYLOTLKEG
duvatdtnteg, ouvdEovtal UETAEU TOUG, adrVOVIAC HAC eKTEDELUEVOUC OE KEVA
aodpoaielag mou Ba pmopoUoav VA €XOUV ETIMTWOELS OKOUA KAl OTN CWHATIKA UAG
vyela, mépa amnod tnv acharela twv Sedouévwy Uag.

- H un &wBeowotnta avolytwyv makeétwyv dedopévwy kivnong Siktuou, laitepa
npoodatwy, mMou Ba TEPLEXOUV TIO KOLWVOUPLEG €TBECELS, AOYW LOLWTIKOTNTAC,
QVTAYWVLIOHOU TwV Tapoxwyv SIKTUoU, TTou Ba umopovoav va avavewoOUV TOV XWPOo
™NGg €peuvac.

- H avemapkela tng un emuPAenopevnc pabnong, mopoho mou evdeikvutal yla TNV
aviyveuon avwpaAlwy, kabBwc anod unlabelled dedouéva dev pmopoUv oL EpEUVNTEC va
E€pouv TNV Mpaypatikn anodoon Tng, evw tautoxpova n dnpovpyia labels (etiketwy)
oTa TakeETa amoteAel pa Wblattépwe SuokoAn kal xpovofopa dladikaoia.

Yuvolilovtag, mapoAeg TLG TPOKANCELS KOL TOUG TIEPLOPLOUOUG TIOU AVTILETWTTIlEL N aviyveuon
QAVWUAALWY 0TO XWPO TNG aodAAELAS SIKTUWY, N €pEUVa AVaNTUOOETAL Hall e TOV TOPEN TNG
HUNXAVIKAG LABNoNG Kal TEXVNTAG vonuoouvng, akoAouBwvTag TIG Lo KalvoTopeg uebodouc.
H un emPAenopevn uabnon umopel ylvel o XproLun oTov TPAYHOTIKO KOOUO, ULaC KOl Ta
Sebopéva mou xpnopomoletl e ypelalovtal labelling, kal pmopet va aviyvelel QyvwoTeC Kal
KOaVoUPLEG €TIBE0ELS. Mapd TNV TACN TOU €XEL EeKWVNOeEL Ta TeAeutaia SVo ypovia va
SlepeuvnBouv oL TEXVIKEC pNn emBAemMOpeVNC Habnong, n emPAemoOpeVn Labnon mapapevel
akOpa o KUPLOC TPOTOC TIOU PEAETATAL N aohAAela Twv SIKTUWY, KAl TIEVIE Ao TOUC TIO
BaokoUg aAyopiBuoug pnxaviknAg uabnong oe mpofAnpata Taflvopunong, av Kol KAmwE
MapwyNUEVOL T, HEAETHONKav ota mAaiola authg TG SuTAwPATIKAG epyaoiag, Sivovtag
QmoTeAETHATA O€ TIOAU (KAVOTIOLNTLKO eTtimedo.

Table of Contents

F Yo (g Toa T 1=t e 41T) 2
Y o1 1 - Tt (PP P PP RPPPPPPPPR 3
[NETo 10N g Y1 T (N 3
o [VEY o I €10 1. o 11 o RO 4
Table Of CONTENESvviiiiiiiiieeeteee e srrre e e s s sba e e e s ssabee e e s sssbeaeessnsnaneessnns 7
TV T T o (=) 9
LI o] (S [1o [10
o [T 1o o) o [T [SRR 12
O [d o T 0T 4 o] o HU OO PP UPPPPPPPPPPPPRRN 13
2. An overview of machine learning and anomaly detection researchccccccuvvveeeieennnnns 14
2.1. Supervised Maching [€arNINGcveeiiiiiiiiiiiiiieeee e e e s e aaeees 15
2.2. Anomaly detection with machine learning: related researchcccccceeeeeiiiiiinnnnen. 16
2.3. The advantages of the NSL-KDD dataset..........ccccceeeeieiiiiiiiieeeeee e 17

3. Classification models analysis..........eeeeeeiiiiiiiiiiiieee e 18
0 I o=y o ol 2T =4 €T [o F PR 18
K0 B <ot] (o o T I (== RN 19
3.3. K—=Nearest NeighboUrscoooviiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 20
3.4. GAuSSIaN NAIVE BaYES.......ciiiiiiiiiiiiiiiieiceiiiee ettt e ettt e e e st s s e sebae s s seasae s s esaransaanes 21
3.5, MUILi-Layer PEIrCEPLION ...vvviiiieeeeeeeiiitttteee e e ettt e e e e e e e ssrbr s e e e e e e s s s sabssseeeeaeessnnanes 22

4. Characteristics and pre-processing of the NSL-KDD dataset...........ccceeeeeeeeeeeeieeeeeeeceeeeeenn, 24
4.1. The attack labels (traffic tYPe) ...ceeeeeeeeeeeeeee e 24
4.2. The features Of NSL-KDDcuuuuieireeeeeeereeereeneeeeeeeessesessnnes 29
4.2.1. CategoriCal TEATUIESevee i ittt e e e e e 29

4.3. Pre-processing of the NSL-KDD datasetuuvvvreriiirrriiiriisiissssssssssssresssnssnssssa.... 34
ViGN 0 T o [o Vo A=Y g Yot o | o = 37
4.3.2. COMTelatioN.....cceeiiieeeee e e e e a e e e e e e e e nnaaa 38
4.3.3. Xand Y components, scaling the data............cooooeiiiiiiiiiiiiiiiiiieceeceeeeeeee, 43

5. EValuation and reSUILS.........ceviiviiiiiiiniie e e e 46
5.1. Interpreting the Classification REPOItScccvvvvieiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 48
5.2. Evaluation and results compared to relevant researchcccccccvveveviveevieiiiieiieieeeeennnn. 50

6. DISCUSSION @NA FULUINE WOTK...uueiviiiiiie ittt et eetiee s et s seassetnsssesnssesnssssnnssssnssssnnssssnssesnnns 51

Annex A: table of the NSL-KDD fEatUIES.........coeveveviiiiie et e e e 53
Annex B: table of all the services in the NSL-KDD dataset........ccccceeeeeeeeeeciiiirieeeeee e, 56
Annex C: list of all the classification reportscoooveeeeeiiiiiiiiiieeeeeeeeen 57
C.1. Case A: using KDDTrain+ KDDTest+ as training and test sets............ccceeeveeeeeeeeeeeeennnnn. 57
C.2. Case B: splitting the KDDTrain+ for training and test setscoovvvveveveeeiieeiiiieeeennennn. 72
R0 =T =T ol Y- 87

Figure

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

s index:

sigmoid function graph (SOUrce [14]) ..ooouviieiiiiee e 18
decision tree classifier representation (Source [16])......ccccueeeieiiiieeiiiiieeeeiiieeeee 19
knn distribution of the training set according to its labels (source [17])........ccc....... 20
KNN AUMING TESTING 1ot e e e e e e saaae e 21
the multilayer perceptron, a fully connected feedforward ANN...........ccoviiiiinn, 22
distribution of traffic by class of attack in training datasetc.ccoeoveeeiiiiiiiiinnnn .. 25
distribution of traffic by class of attack in test datasetccoceeevviiiiiiiiiiceien. 25
traffic distribution in training Set.....cc.viiiiiiic e 27
traffic distribution iN teSt SEL....uiiii i 27

traffic ratio iN Training SEL....oiuiii e 28
traffic ratio iN TEST SEL..uuiiii i 28
protocols distribution in training SET......coiiiiiiiiiiiieece e 31
Protocols distribution iNTEST SEL ..iiiiiiiiii e 31
services distribution in training St ... 32
services distribution iN TeST SEt.......iiii i 32
flags distribution in training Set.........oiiiiiiii e 33
flags distribution iN TSt SET.....viiiiiiiiii e 33

Figure 18: Multiclass training and test dataframes (heads)cccccccoviiiiiiiiiii, 35
Figure 19: Binary training and test dataframes (heads)ccccooviiiiiiiiiii i 35
Figure 20: 4-class training and test dataframes (heads)ccoooviiiiiiiiiiiii e, 35
Figure 21: difficulty distribution in training SEtcooiiiiiiiiiie e 36
Figure 22: difficulty distribution in TeST Stiiiiiiiiiiie e 36
Figure 23: correlation in multiclass traiNing Stcooviiiiiiiiiieeee e 39
Figure 24: correlation in MuUlticlass tEST Stcovviiiiiiiiiiccec e 39
Figure 25: correlation in binary training Set.......ccciiiiiiiiiiii e 40
Figure 26: correlation in binary teSt SEt ...ouuiiiiiiiii e 40
Figure 27: correlation in 4-class training SELcoviiiiiiiiiii e 41
Figure 28: correlation in 4-Class tESt SEL ..t 41
Figure 29: training dataset (multiclass) after standard scaling.........ccccooevveeviiiiiiiiiiiiccee, 44
Figure 30: accuracy scores of all models and classification scenarios for case A..........ccceee.. 47
Figure 31: accuracy scores of all models and classification scenarios for case B..................... 48

Tables index:

Table 1: distribution of traffic in training and test datasetsccccccovviiiiiiiiiii i 26
Table 2: all attack labels of the NSL-KDD, by Class.........vviiiiiiiiiiiiiiieeciice e 26
Table 3: protocols in the NSL-KDD SUBDSELS.........coiiiiiiiiieeeeeee e 30
Table 4: flags in the NSL-KDD datasetcccuuuviiiiiiiieeieeeee e 34
Table 5: labels of the dataframes before and after one-hot encodingcccccoovviiiiiiiiinnnnn 38
Table 6: correlation matrices diMENSIONScoiuiiiiiiiie e 42
Table 7: summary/comparison of classification algorithms performance in case A 46
Table 8: summary/comparison of classification algorithms performance incase B 47
Table 9: list of all the features iN NSL-KDDoooiiiiiiiieee e 53
Table 10: list of all the services in the NSL-KDDcccuvviiiiiiiiiiiie e 56
Table 11: logistic regression on the multiclass training set ... 57
Table 12: logistic regression on the multiclass test set (validation)ccccceiiiiiiiiiiiiiiieen 58
Table 13: logistic regression on the binary training Set.......ccccovviiiiiiiiiiiece e 59
Table 14: logistic regression on the binary test set (validation)ccccccoooiiiiiiiiiii, 59
Table 15: logistic regression on the 4-class training Stccovvieiiiiiiiii e 59
Table 16: logistic regression on the 4-class test set (validation)ccccoioiiiiiiiiii 59
Table 17: decision tree on the multiclass training Set........ccccviiiiiiiiiiiiiieeee e 60
Table 18: decision tree on the multiclass test set (validation)ccoovvviiiiiiiiiiiiicci 61
Table 19: decision tree on the binary training Set.......c..iiiiiiiiii i 62
Table 20: decision tree on the binary test set (validation)cccccvieiiiiiiiiii e 62
Table 21: decision tree on the 4-class trainiNg SEt......cccviiiiiiiiiiiiie e 62
Table 22: decision tree on the 4-class test set (validation)cccoccoiiiiiiiiiiiii 62
Table 23: knn on the Multiclass training SEt.....couiiiiiiiiii e 63
Table 24: knn on multiclass test set (validation)cccuvvieiiiiiiiieieeeeeee e 64
Table 25: knn on binary training SEt.. ..o 65
Table 26: knn on binary test set (Validation) ..o 65
Table 27: knn on 4-Class training SET ...cooiuieiiieiiee e 65
Table 28: knn on 4-class test set (validation) ..o 65
Table 29: Gaussian Naive Bayes on multiclass training Setcccovveiviiieiiii e 66
Table 30: Gaussian Naive Bayes on multiclass test set (validation)...........cccoeoiiiiiiiiiiii, 67
Table 31: Gaussian Naive Bayes on binary training Setccoovieviiiiiiieeiiee e 68
Table 32: Gaussian Naive Bayes on binary test set (validation)cccccoevvviiiiiiieei 68
Table 33: Gaussian Naive Bayes on 4-class training Stcoovvvivvivieeeeee e 68
Table 34: Gaussian Naive Bayes on 4-class test set (validation)........ccccccevvviviiiieiiiiiii 68
Table 35: MLP on multiclass training STuuuiiii i 69
Table 36: MLP on multiclass test set (validation)ccoooiiiiiiii e 70
Table 37: MLP on binary training SEL....oii i 71
Table 38: MLP on binary test set (Validation)ooooiiiiii e 71
Table 39: MLP 0N 4-Class traiNing SEE...c.iiiiiiiiiee et 71
Table 40: MLP on 4-class test set (Validation)ccooouvviiiiiiiii e 71
Table 41: logistic regression on the split multiclass training setccccoeivviiiiiiiiic 72

10

Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:
Table 65:
Table 66:
Table 67:
Table 68:
Table 69:
Table 70:

logistic regression on the split multiclass test set (validation)ccccovvvvviieirininnn, 73
logistic regression on the split binary training Stccccccivviiiiiiiiiiieeeeee 74
logistic regression on the split binary test set (validation)cccccccooeiiiiiii, 74
logistic regression on the split 4-class training Setcovvvvieiiiiiiii i, 74
logistic regression on the split 4-class test set (validation)........ccc..cccoeviiiiiiienn, 74
decision tree on the split multiclass training Setccovcveiiiiiiii i 75
decision tree on the split multiclass test set (validation)cccoeeviiiiiiiiiiiiiinc, 76
decision tree on the split binary training Stccccceviiiiiiiiiiiie e, 77
decision tree on the split binary test set (validation)cccceoiiiiiiiiiiii, 77
decision tree on the split 4-class training Setcccoviiiiiiiiiiiiiicee e, 77
decision tree on the split 4-class test set (validation)..........cccccccooiiiiiiiiiii 77
knn on the split multiclass training SEt....c.vviiiiiiiiiiie e 78
knn on the split multiclass test set (validation)ccccceevviiiiiiiiiiiceeee, 79
knn on the split binary training SEt........oovvviiiiiiiiiie e 80
knn on the split binary test set (validation)c...ccoeiiiiiiiii e, 80
knn on the split 4-class training SEtvvviiiiiiii e 80
knn on the split 4-class test set (validation)cccoevviiiiiiiiii e, 80
Gaussian Naive Bayes on the split multiclass training set.........cccccvvviiiiiiiieieiienn, 81
Gaussian Naive Bayes on the split multiclass test set (validation)..........ccccoeviiieinns 82
Gaussian Naive Bayes on the split binary training setccoocveiiiiiiiciiee 83
Gaussian Naive Bayes on the split binary test set (validation)........cccccovviiiiiiiinnnn, 83
Gaussian Naive Bayes on the split 4-class training set......cccccceeeiiiiiiiiiiiieceeeee, 83
Gaussian Naive Bayes on the split 4-class test set (validation)...........cccoeeeeeiiiniin, 83
MLP on the split multiclass training SEt.......cccciiiiiiiiii e 84
MLP on the split multiclass test set (validation)ccccccooeiiiiiiiiii e, 85
MLP on the split binary training Set......ccvvviiiiii e 86
MLP on the split binary test set (validation)ccoovviiiiiiiiiiiie, 86
MLP on the split 4-class training SEt......ccocvviiiiiiiiiii e, 86
MLP on the split 4-class test set (validation)cccooviiiiiiiiiic e, 86

11

Equations index:

Equation 1:
Equation 2:
Equation 3:
Equation 4:
Equation 5:
Equation 6:

logistic/sigmMOid fUNCLIONc..eiiiiiiiee e 18
output y as a function of the input values Xcoooviiiiiiiiiieiiice e, 19
probability that X belongs to class Y. ..o 21
probability that class Y is the correct outcome of occurrence X..........coeevvnnne.. 21
probability of X being class Y when X follows Gaussian distribution..................... 22
standard sCaling @QUATIONuuviiiiii e 44

(o[Tu{o] WA o] g =Tol I o] g I =To T L= 1 A 0] o HPS RPN 49
Equation 8: recall @qUAtioNc..uvviiiii e 49
Equation 9: F1-score - harmonic mean @qUAatioNcc..iiiiiiiiiee i 49
Equation 10: acCuracy eqUAtiONoiiiiiii e 49
Equation 11: intuitive aCCUracy @QUATIONuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeennenenenennnnnne 49

12

1. Introduction

In today’s world, most processes and services of everyday life pass through the Internet.
Networking has advanced greatly in the past few years, and will continue to do so, with the
vast implementation of 5G and 6G that is already being tested and researched. Because of the
important role that networks and the Internet play in our society, cyber security has become
vital for the protection of our data and devices. Intrusion Detection Systems (IDS) are an
important part of cyber security and of the network’s infrastructure, as they can detect and
prevent the malicious programs and users from breaching the network and stop various kinds
of attacks before they pose a danger. With the rapid growth of machine learning and artificial
intelligence (Al), IDSs have shifted from signature-based techniques, that work by recognising
specific patterns in mostly known attacks, to more abstract anomaly-based detection, which
classifies traffic as normal (safe) and abnormal (dangerous).

Anomalies in a network can be caused by malicious activities that take advantage of network
services, overload of traffic, malfunctioning devices and compromising various network
parameters [1], and can be performance-related (e.g., traffic flooding because of a
malfunctioning node) or security-related (e.g., intentional flooding of the network resources
so that legitimate users cannot access the services). Anomaly detection systems can detect any
kind of deviation from the normal behaviour, so they are better than more classical signature-
based systems at catching novel and unknown attacks; however, it comes at the cost of raising
more false alarms.

The NSL-KDD dataset is one of the most commonly used network traffic sets ever since its
creation in 2009 [2][3][4]. It is still used in research as a benchmark for network traffic
classification models, like all of the papers cited here. Thus, it provided an excellent dataset for
the comparison of the different machine learning models tested, for a reliable source of
different types of attack labels and high difficulty level of attacks in both the training and the
test sets. In addition, the differences between the two subsets provided for a good real-world
test of the models’ abilities to classify correctly.

In this thesis, our objective is to use the NSL-KDD dataset to compare five of the most
commonly used supervised learning classification models, which are: logistic regression, k-
nearest neighbours, decision tree, Gaussian Naive Bayes, and the multi-layer perceptron. For
this purpose, section 2 provides a brief introduction to machine learning techniques for
anomaly detection, as well as relevant research that has been carried out in the past couple
years; it also discusses the advantages of the NSL-KDD dataset. Section 3 gives more
information on the five algorithms that are used for our experiment. In section 4, after creating
three instances of the dataset, in order to compare the different classification scenarios
(multiclass, binary, and 4-class classification), the NSL-KDD dataset is initially analysed and pre-
processed, and subsequently fed into the different models and optimised for best accuracy
scores. Lastly, in section 5, the models are evaluated, and the results of this research discussed,
and section 6 focuses on the problems that anomaly detection is still facing, as well as future
work and research on the topic.

13

2. An overview of machine learning and anomaly detection
research

Machine learning has been one of the most rapidly advancing technologies for years now, and
continues to grow even more, with the advancement of computational power, artificial
intelligence (Al) and Internet of Things (IoT). In the domain of cyber security, machine learning
has greatly influenced the way networks are protected, which is something crucial in the era
of the Internet Services.

Intrusion Detection Systems (IDS) are now capable of recognising unknown attacks that try to
penetrate the network, by scanning the traffic for anomalies. Anomalies in the network are all
instances in the data that do not conform to the behaviour exhibited by normal traffic [1].
There don’t necessarily have to be malicious attacks, as performance-related anomalies also
occur in the network (traffic overload, malfunctioning devices, etc). However, anomalies in
data can translate to significant and often critical problems with the information passed
through the network. In network security, the anomalies researchers and the relevant systems
are looking for are security-based, which means that they stem from malicious actions against
the network. These intrusions to the network aim to compromise the confidentiality, integrity
or availability of a system or service, by bypassing the security mechanisms built in the
network’s infrastructure. As a result, security experts use IDS in order to protect the network
from outside threats.

An IDS is a software and/or hardware system that monitors the events occurring in a network
and analyses them for signs of intrusion by unwanted traffic (malicious activity). IDSs can be
signature-based, that can only detect known attacks, and need constant updating from the
vendors in order to keep up with the rapidly growing new malware, or they can be anomaly-
based, which can capture any deviations from normal behaviour, and are better at recognising
attacks that were previously unknown. However, they generate a large number of false alarmes,
due to the limitations of their capabilities and training.

Anomaly detection IDSs rely heavily on machine learning, since their function is to classify data
based on what is considered normal traffic and deviations from it. The fact that they require
training is the reason they have limited capabilities still. There are four machine learning model
categories that can be applied to anomaly detection: a) supervised, b) semi-supervised, c)
unsupervised and d) hybrid training models. In supervised training, the IDS model trains on
labelled data, from a dataset that contains both normal and malicious traffic and any unseen
instance is compared to the model to determine which class it belongs to. In semi-supervised
models, training data contains only normal data instances, thus it cannot differentiate between
attack classes when it encounters malicious traffic, only normal and abnormal events. With
unsupervised training methods, the model doesn’t require any training data, which would
make it the most widely applicable way, but the unlabelled nature of the data makes them less
useful and quantifiable in their performance. Naturally, the hybrid approach combines features
of all the aforementioned methods, to create the optimal result for large scale applications.

14

In this thesis, the models that were developed and compared are all supervised learning
algorithms, thus a more thorough explanation of the way this kind of machine learning works
in our context will be given in the next section.

2.1. Supervised machine learning

Supervised anomaly detection systems are based on prior knowledge that they acquired during
training. They build a predictive model that compares new instances with the existing classes
(normal or abnormal traffic) and decides upon each event accordingly.

Supervised machine learning is defined by the use of labelled data for training [5][6], that will
help classify or predict accurately when the model is used. By the term label, it is implied that
the training dataset includes input data and the corresponding outcome each entry should
generate. As input data is fed to it during training, the model adjusts its weights
(interconnections inside its nodes) so that the outcome it produces matches the correct
outcome as much as possible. This is measured through the use of a loss function that
calculates the deviation between the produced result and the correct result. The goal of
training is to minimize the loss function.

There are two categories that supervised learning applies to: classification and regression. In
regression problems, the model needs to understand the relationship between the dependent
values and the independent ones. It is usually applied when we want to make future
projections, like weather prediction, stock prices, business revenue, etc. On the other hand, in
classification applications, the model needs to understand what features make an instance the
class it is, and assign the input data into the right categories, like the spam folder of our emails.

Anomaly detection is a classification problem, and some of the most common supervised
learning methods for classification are the ones that were used in our project, which are
analysed in section 3. Classification models analysis.

Supervised learning differs fundamentally from unsupervised learning, because, unlike with
unsupervised learning, it uses labelled data. Unsupervised learning methods try to discover
patterns in the data and cluster them or make associations. Each method has its own
advantages and disadvantages, but let’s take a look at what these are for supervised learning
methods.

Disadvantages and challenges of supervised learning:

- Creating labels for some datasets can be time consuming, or even impossible in some
cases, due to the limited information available on the data.

- lrrelevant input features can hinder the performance of the model greatly, as well as
when unlikely, incomplete, or out of bounds values are inputted as training data.

- When dealing with classification applications, representing all classes in a balanced way
is a challenge and the performance of the model is lowered if the data is imbalanced.

15

That is especially true for big data analytics, where classification is sometimes
impossible.

- Models can be prone to overfitting, when the quality of the training data is not good
enough, or when the hyperparameters of the model are not optimal.

Advantages of supervised learning:

- When prior knowledge and experience is important, supervised learning is the best way
to create a model based on those characteristics, which will learn from experience.

- Supervised learning helps optimise the performance of our model based on what
features of the input data are selected.

- It is helpful in various real-world computational problems that other methods are
incompetent in, due to the lack of information during their training phases.

Supervised learning is the most reliable way to create models, when it is important to know
how well the algorithm used performs, how accurately it works. They are the best predictive
models for many applications, but on the other hand, they require a lot of preparation and pre-
processing of the training data so that their results are not biased or overtrained.

For anomaly detection, the problem with supervised training is that the process of assigning
labels to traffic data is very time consuming and even impossible when dealing with unknown
or novel attacks. However, unsupervised methods are not dependable as to their performance,
because there is no way for the model to validate whether the traffic is really normal or not.

2.2. Anomaly detection with machine learning: related research

There have been many innovations in the field of anomaly detection in the past few years,
using the NSL-KDD dataset. There are many unsupervised learning experiments, with
autoencoder and one-class SVM combinations [2]. Convolutional autoencoders are used by [7]
paired with a one-class SVM layer that classifies the data after the convolutional step of the
model. In [2] we can also find that one-class SVM as well as autoencoders have been also used
in self-supervised learning methodologies. One-class SVM has also been paired with
Bidirectional LSTM methods in [8]. Neural networks have been used extensively in anomaly-
based intrusion detection, as is evident in [3], and DNNs have been tested with selective
feature extraction [9].

There have been comparative studies such as our own too, in the past couple of years, namely
[10][11][12][13], and we can also find more comparisons of such research projects in review
studies [3][2]. Going beyond the NSL-KDD dataset there are many more articles, but for a
consistent view of this research topic, we will stay with those projects that use the NSL-KDD as
their dataset here. In section 5.2. Evaluation and results compared to relevant research there
is @ more thorough comparison between the methods that were developed in this thesis, and
the state-of-the-art studies conducted lately, after our own results are extracted.

16

2.3. The advantages of the NSL-KDD dataset

Lastly for this section, it is worthwhile to mention some more information on why the NSL-KDD
was chosen and where it came from. The NSL-KDD was created in 2009, as an effort to
overcome some of the limitations and problems that its ancestors, DARPA (1998) and
KDDCup99 (1999), had. it is, like the original KDDCup99 before it, a publicly available dataset
of network traffic data records, which contains a selected subset of the data in KDDCup99 [1].
The selection of that data occurred by applying some filters targeting the problematic instances
in it, and at the same time, providing best practices for data mining to create the new dataset.
So, the main advantages of using this dataset are:

- It doesn’t include any redundant records in it, thus avoiding biasing toward more
frequent records.

- There are no duplicate records in the test set, so that the performance of the models
is not biased by those with falsely higher detection rate.

- The number of selected records from each difficulty level is inversely proportional to
the percentage of records in the original KDDCup99, therefore the classification rates
of various machine learning methods vary in a wider range.

- Opposite to the KDDCup99, that had millions of data records in it, both the KDDTrain+
and the KDDTest+ have a reasonable amount of records in them, making it affordable
to run experiments on the complete datasets instead of selecting a random small
portion of it. That is why evaluation results of different research groups are consistent
and comparable (like it happens with our models).

The NSL-KDD is not a perfect dataset, as it is quite outdated, and because it is a synthetic
dataset. There is, however, much value in those rare, good datasets that are available, even if
they are old. Firstly, they are already labelled, a process that is very time consuming or even
impossible sometimes, which allows researchers to test supervised learning methods, or
validate the unsupervised models more frequently used today. Benchmark datasets, like NSL-
KDD, are used for validation and evaluation of new approaches to intrusion detection, and
comparison between different methods, old and new. They are also the only way to have
repeatability in the experiments done over the years, especially because they are publicly
available to all researchers. A rich in features dataset like NSL-KDD also allows different
approaches to fine-tune into different parameters, and extract features for more light-weight
models, or simply provide a base on which new datasets can be built.

The network traffic datasets are valuable assets for IDS research. However, none of them can
clearly represent the real-world traffic, as it is constantly evolving, and new attacks always
appear (or haven’t been discovered yet). Apart from the privacy and security concerns that
hinder the mining of real data, simulations are also difficult to do realistically. Evaluation of IDS
datasets is challenged by all the difficulties in collecting attack and victim scripts, by the rapid
speed at which attacks evolve and are produced, and also by the many different network
services that not only make traffic more complex, but also leave new gaps for exploitation.

17

3. Classification models analysis

In this section, the algorithms that were used for the classifications are going to be described
and briefly analysed, to better understand the way they work and what the advantages and
disadvantages of their use are.

3.1. Logistic Regression

Despite its name, logistic regression is a supervised classification algorithm, one that uses
regression to calculate the probability that a specific data entry (input — X;), belongs to
category Y;. Describing it first as a binary classification problem, for an easier approach, will
help us understand the mechanics of this algorithm, while its use can easily be expanded for
multiclass classification problems, as multiclass classification (multinomial logistic regression)
takes place the same way as binary, in a one-against-all way; this means that the class
examined is classified as 1 whereas all other classes are considered 0 for the test (g(z)) of
each specific entry.

The function that logistic regression uses for the calculation of the probability is the sigmoid

function [14]:

9B =1 =

Equation 1: logistic/sigmoid function

Figure 1: sigmoid function graph (source [14])

It is noticeable from the graph of the function that when z — oo, then g(z) tends toward 1
and when z - —oo then g(z) tends toward 0, which is why regression works well as a function.

18

The variable z describes the input value, which is the variables vector of the entries X; =
{x0, %1, .-, Xn_1} (for n number of features in the dataset) multiplied by weight values, that
will be tweaked as the model tries to predict y with respect to X;.

n-—1

y(x) = Opxg + 011 + -+ Op_1Xp_1 = z 0,x; = 07X

i=0
Equation 2: output y as a function of the input values X

Thus, in the case of logistic regression, this abstract function becomes y = g(87X;). Through
the training of the model, the weight values (%) are randomly initialized and then change so
that the loss function is minimized, and this sets the threshold for whichy = 1 ory = 0.

Logistic regression is one of the simplest machine learning algorithms, so it doesn’t need many
conditions to generate satisfactory results and doesn’t require much CPU power usually. It also
doesn’t overfit as much as more complex algorithms and can easily update with new data.
Nevertheless, its simplicity hinders its performance on higher dimension datasets, and highly
correlated variables in a dataset should be avoided; also, it needs to train with larger datasets
without redundant records in them [15].

3.2. Decision Tree

The decision tree classifier is a tree-shaped algorithm that is commonly used for classification
applications.

Decision Node _—YRoot Node

------ e

{

|
:Sub-Tree Decision Node | Decision Node

|
| |
¥ Voo |
| : 4’ ¢
: Leaf Node Leaf Node | Leaf Node Decision Node
N o e e e e e e -) |

Leaf Node Leaf Node

Figure 2: decision tree classifier representation (source [16])

The root node represents the beginning of the decision tree and includes the whole dataset. It
gets further divided (splitting) as the algorithm poses conditions to the dataset that create sub-
classes according to the outcome of each entry. Through the splitting process, branches are
created, as different classes of data follow different paths. The leaf nodes represent the

19

outcomes of the classification process, when the model cannot further classify the subset that
has gone that way. Another process for correcting the model and minimizing error is pruning,
which cuts out the branches that don’t have any data and keeps the optimal tree paths [16].

The decision tree is a simple algorithm that mimics the way humans make decisions, so it can
be very useful in decision-related problems, and its simplicity also requires less cleaning and
preparing for the data. However, when the dataset contains many labels, the classifier is prone
to overfitting, and its complexity becomes very high when there are many layers to the
decisions.

3.3. K— Nearest Neighbours

K nearest neighbours is one of the most essential supervised classification algorithms in
machine learning. It is also one of the most basic ones, given that it doesn’t make any
assumptions about the distribution of the data (non-parametric algorithm). It finds application
in pattern recognition, intrusion detection and data mining [17], [18].

As a supervised method, the training set is first distributed according to the labels in a n
dimensional space (as the vector of the input features enforces), like we can see the two labels
(“Green”/“Red”) in Figure 3:

14
12.
[l

10 ..l.

T m

6 .I .

: 0’0’.0
| INNNSRNN ANNN AN LRSS RN ARSN RN GRAN AR AN RREN AN R

28 IHSRissE ISEREEER IREsuund RSREASE IREsRnE ISR SRGH INEReREE RRREEED
{2 34|85 |6 |7 |8

Figure 3: knn distribution of the training set according to its labels (source [17])

After that, during the testing, unclassified data is placed in the graph according to their
attributes, and the model must try to classify it properly (Figure 4). This is where the parameter
k plays an important role, as this algorithm determines the class of each test datapoint as the
same class that the majority of its k- nearest neighbours are, through a voting mechanism. If
we set k =1, then the unclassified datapoint will be grouped together with its closest
classified point. In general, when we choose fewer neighbours, it is better to choose an odd
number of them, so that there is no conflict to resolve.

20

14
12 .
[|

10 on ..

¥ m Al

: - "o

: o % ¢ +*

0 | | | | | h | |
l { | | \ I | |
{23 4 567 8

Figure 4: knn during testing

K- nearest neighbours is a good algorithm to use when the data is multinomial (multiple
classes), or non-linear (for regression problems), since it doesn’t have underlying assumptions
on the training data distribution; it is also easy to understand and implement. However, the
computational cost and memory requirements are relatively high, as it must store all the
training data to work, and if the value of k is high, then the voting process takes much longer
to predict the outcome.

3.4. Gaussian Naive Bayes

Naive Bayes is a probabilistic classification algorithm based on the Bayes theorem. Gaussian
NB is an extension of it, which assumes Gaussian (normal) distribution of the data. The naivety
of the model comes from the assumption that all the features of the dataset are independent
from each other, meaning that variation in one variable of the dataset do not impact the other
features. The Bayes theorem is a conditional probability theorem that defines a classifier so
that the error rate (misclassification) is minimized through the training phase, that works in a
way to go from P(X|Y) to find P(Y|X) [19][20].

In the Bayes rule, from the training data we have:

P(XNY)

PX|Y) =
KN =5
Equation 3: probability that X belongs to class Y

And from this, which is learnt during training, the model needs to learn the opposite (if Y is the
correct class), during the testing phase:

P(XNY)

PIVIX) =

Equation 4: probability that class Y is the correct outcome of occurrence X

21

There can be many mathematical expressions for the probability, but one of the most reliable
ones, which is commonly used with Naive Bayes, is the Gaussian distribution (aka normal
distribution), which assumes that X is a continuous variable:

—(x—po)?

e ZO'CZ
o

Equation 5: probability of X being class Y when X follows Gaussian distribution

P(X|Y =¢) =

In this Equation 5, o is the variance, u is the mean value of the data, and X is calculated for a
given class c of Y.

The Gaussian Naive Bayes is a simple, fast, and very effective algorithm, that can even
outperform high complexity models. It can predict multiclass datasets, especially of categorical
labels, and can perform well with less training data than other algorithms, as long as the
condition for independence of the variables holds. On the other hand, the probabilistic nature
of the algorithm comes with many conditions. If the input variables are not independent (which
is rarely the case in real life) then the model underperforms significantly, as we will see in our
own results too. Another big problem is that if a class that is present in the test set has not
appeared in the training set, then the model assigns that class zero possibility.

3.5. Multi-Layer Perceptron

The multilayer perceptron (MLP) is a fully connected Artificial Neural Network (ANN). it feeds
the input form the input layer to the hidden layer by taking the dot product of the input values
with the weight parameters that exist at the interconnection of all nodes of the ANN. When all
the input nodes are weighted, they add up at the entrance of the next layer’s node, where
their resultant value passes an activation function (e.g., sigmoid, ReLU, tanh).

nput Layer Hioden Layer Outpurt of
(e}
i il

Figure 5: the multilayer perceptron, a fully connected feedforward ANN

22

The value that comes out of the activation function is now the value of the hidden layer’s node
and it can be fed to the next layer (another hidden layer or the output layer) with the same
process of dot product calculation and activation function; this process is repeated in all the
nodes of all the hidden layers [21], [22].

After getting to the output layer, the outcome value of the ANN is either used for
backpropagation during the training phase, or the is presented as the result of the prediction
during the test.

Multilayer perceptrons are the basis of all ANNs, and have greatly improved machine learning
algorithms, both in regression and in classification applications. Their flexibility and the
abundance of both activation and optimisation functions have enabled computers to not be
constricted by XOR calculations and enrich their learning potential for more rich and complex
problems.

MLPs can be shallow, when there is only one hidden layer, or Deep Neural Networks (DNNs),
when there are two or more hidden layers. ANNs, especially DNNs are at the forefront of
research in the past few years, as they are fundamental for deep learning and Al. One of their
core strengths is that they solve problems stochastically, therefore allow approximate
solutions to very complex or even unsolvable problems. The stochastic way of work allows the
model not to make any assumptions about underlying probabilistic density or other relations
between the variables of the input data, but rather get to it through the weight functions
(interconnections of the nodes) and the repetitive process of training. MLPs can have high
performance scores even with less training data, if given a sufficient number of nodes and
layers, and a two-layer backpropagation neural network with enough hidden neurons has been
proved to be a universal approximator [23]. The most important disadvantage of MLP
compared with other DNN methods is that it is fully connected and creates a dense network,
so the number of parameters needed for the model becomes very high. This leads to
inefficiency and redundancy in more complex problems [24].

These are the five models that were used for this project. This brief explanation of the way
they work is hopefully helpful for understanding why each of them showcased the results it did
during the experimental phase. Each model has its own use and advantages in different cases,
so it was considered useful to provide this comparison among them, with the NSL-KDD, which
provides for a rich dataset when it comes to the number and variety of features, variation in
the correlation between them, and many classifications to study.

23

4. Characteristics and pre-processing of the NSL-KDD dataset

The NSL-KDD dataset is devised of many subsets of data. Specifically, the main sub-datasets
are the KDDTrain+ and the KDDTest+, which have 125,973 and 22,544 rows respectively,
giving it a 17.9% rate of test to training data. These two contain the full training and test
datasets in .csv format, including attack type labels for each record and a difficulty level
(ranging from 1 to 21). Apart from the two, the set contains a subset of the test including only
the records with difficulty level lower than 21/21 named KDDTest-21, and another subset of
25,192 records, randomly taken from the training dataset, the KDDTrain+ 20Percent. The
records of KDDTest-21 and KDDTrain+_20Percent are all included in the bigger datasets,
KDDTest+ and KDDTrain+ respectively, so all the information of the dataset is present in the
main files.

The datasets are comprised of records of network traffic, as seen by a simple IDS network. Each
record (row) has 43 features (columns), out of which the first 41 (#0 — #40) are
characteristics of the traffic, #41 is the attack label, and #42 is the difficulty level of the input.

4.1. The attack labels (traffic type)

In total, there are 39 attacks (40 different labels including the normal traffic) that belong in
four classes: Denial of Service (DoS), Remote to Local (R2L), User to Root (U2R) and Probe
attacks. The four classes of the NSL-KDD dataset are different in their objectives, the way they
infect the network, and how they are distributed in the dataset. Also, a fifth category of the
dataset is the normal traffic, which, naturally, is encountered more than all the attack traffic.

Denial of Service (DoS): DoS attacks flood the network with abnormal traffic, so that the normal

traffic can’t reach it. As a result, the network will most likely shut down, in order to be
protected from the volume of data trying to pass through the IDS.

Remote to Local (R2L): as the name suggests, R2L is an attack that tries to get local access to a

system or network from a remote machine that can’t normally do that, so the attacker tries to
“hack” their way into the network.

User to Root (U2R): this is an attack where a normal user account tries to gain privileged access

as a super-user (root access), by exploiting vulnerabilities and gaps in the devices of the system
or network.

Probe: probe or surveillance attacks try to steal information from a network. That can be client
information, banking data, passwords or other personal data that are passing through the
network.

24

In the NSL-KDD, these four classes (as well as normal traffic) are not equally distributed in the
dataset. We can see from the initial analysis that the most common class of attacks is the DoS,
both in the training (Figure 66) and test set (Figure 87):

Traffic class distribution (training set - 4-category clas.)
70000

Counts in dataset

T T T
Das Probe R2L

T
UZR
Type of traffic

Figure 6: distribution of traffic by class of attack in training dataset

Traffic class distribution (test set - 4-category clas.)

10000 -

Counts in dataset

T T T
Dos R2L Probe

T
UZR
Type of traffic

Figure 7: distribution of traffic by class of attack in test dataset

25

Seeing it in absolute numbers (Table 1) there are a few differences between the training and
the test set.

Table 1: distribution of traffic in training and test datasets

Type of traff # in | % in training |# in test| % in test
ic | training set set set set

normal 67343 53.46% 9711 43.08%

DoS 45927 36.46% 7460 33.09%

Probe 11656 9.25% 2885 12.79%

R2L 995 0.79% 2421 10.74%

U2R 52 0.045% 67 0.30%

In total, we see a skewed distribution towards the normal and DoS traffic in both datasets. In
the test set however, the normal traffic is not even half of the total and the R2L class of attacks
is accordingly boosted, compared with the training set. This uneven distribution of internet
traffic is a realistic representation of typical internet traffic, where DoS attacks are the most
common, followed by probe attacks, while R2L and U2R are hardly encountered in real life.

For a more detailed approach, all the different attacks need to be addressed. It is notable that
DoS attacks are the most common in terms of encounters in both the datasets, but when it
comes to the number of different attacks each class includes, R2L is the one that comes first.
In the following Table 2, we can see all the labels that are included in the NSL-KDD, divided in
their classes:

Table 2: all attack labels of the NSL-KDD, by class

Class R2L DoS U2R Probe
ftp write apache2 | buffer overflow ipsweep
guess_ passwd back loadmodule mscan
httptunnel land perl nmap
imap neptune Ps | portsweep
multihop mailbomb rootkit saint
named pod sglattack satan
phf | processtable xterm
Attacks sendmail smurf
snmpgetattack teardrop
spy udpstorm
snmpguess worm
warezmaster
warezclient
xlock
XSNoop
Total 15 11 7 6

The dataset was also studied to classify all the attacks separately, so it was worthwhile to
investigate how many encounters of each attack are found. This can be seen in the next couple
of figures (Figure 88, Figure 99), in the training and test set respectively. In the case of studying
the various attacks separately, the normal traffic outnumbers the rest by far, followed by
Neptune, the most popular DoS attack. It is also notable that in the training set, only 23 labels

26

(22 attacks and 1 for normal traffic) are encountered, whereas in the test set, there are 38
different labels, to make sure that the IDS can identify attacks that were not previously seen
during training, when it first encounters it during the validation of the model.

normal

neptune

satan

ipsweep

portsweep
smurf
nmap |
back
t=ardrop
warezclient
pod

guess_passwd

Type of traffic

buffer_owerflow 1
warezmaster -
land

imap -

rootkit
loadmaodule
fep_write
multinop

phif 4

peri 1

=Py 1

Traffic class distribution (training set - multi clas.)

normal
neptune
guess_passwd
mscan
warezmaskter
apacheZ?
satan
processtable
smurf
back
snmpguess |
saint |
mailbomi
snmpgetattack
portsweep
ipsweep
httptunnel
nmap |
pod
buffer_owverflow
multihop
named

Type of traffic

ps
sendmail o
rootkit
xberm
teardrop
xlock

land A
=snoop |
fep_write
worm
loadmodule A
perl
sglattack
udpstorm
phi

imap

10000 20000 30000 40000 50000 BOO00 Foooo
Counts in dataset

Figure 8: traffic distribution in training set

Traffic class distribution (test set - multi clas.)

o

T T T T T
2000 4000 BO00 BOOD 10000
Counts in dataset

Figure 9: traffic distribution in test set

27

Figure 1010 and Figure 1111 showcase the rate between normal and “abnorma

|II

traffic, since

the dataset was also studied as a binary classification problem. It is noticeable that in the test
set, there is more abnormal traffic than there is normal.

Counts in dataset

F0000

0000

40000

Counts in dataset

8
g

20000

10000

Traffic class distribution (training set - binary clas)

Type of traffic

Figure 10: traffic ratio in training set

Traffic class distribution (test set - binary clas_)

12000

000

2000

Tpe of traffic

Figure 11: traffic ratio in test set

4.2. The features of NSL-KDD

Other than the label feature of the dataset, which is found in the 42nd column (#41), and the
last column that is the severity/difficulty level (#42, which is removed during the pre-
processing phase), the rest of the features represent the information that the IDS uses to
determine the type of traffic and assign the appropriate label to it. These features can be
categorised by the information they contain, and the way it is extracted from the packets
arriving at the network.

There are four categories by which the features are grouped [25]:

Intrinsic features (columns #0 — #8), that contain information from the header without
needing to dive into the payload, which hold the basic information about the incoming packet.

Content features (columns #9 — #21), that hold information about the incoming packets in a
connection-based way that allow the IDS access to the payload.

Time-based features (columns #22 — #30) have the traffic analysed over a 2 second window,
and mostly contain rates and counts (e.g., of connection attempts, port number, connections
that activate certain flags, etc.) rather than information from the packets themselves.

Lastly, host-based features (columns #31 — #40) are similar to the last category, but instead
of analysing inside the 2-second window, they gather information over a series of connections
made (e.g., percentage of connections with the same destination host address/port number),
in order to access attacks that span longer than the window allowed previously.

A table of all the 41 features, with a brief explanation of each, can be found in Annex A: table
of the NSL-KDD features.

The NSL-KDD dataset has different kinds of data in its features, which makes it necessary to
pre-process the data, to be able to find correlation and investigate it, or feed the data into a
model. More specifically, there are four types of data in the dataset: categorical (columns
#1,#2,#3,#41), binary (columns #6, #11, #13,#19 — #21), discrete (columns #7, #8, #14,
#22 — #40, #42) and continuous (columns #0, #4, #5, #9, #10, #12, #15 — #18). Binary,
discrete, and continuous values, being numerical, are okay to be left as they are, but the
categorical values, being in strings forms, are not suitable for further analysis and finding
relationships among the data.

4.2.1. Categorical features

The categorical variables found in the dataset, apart from the attack label column (#41) that
has already been investigated, have to do with three features of the connection: protocol (col.
#1), service (col. #2) and flags (col. #3). In this section, each of these features in the dataset is
going to be briefly analysed, to get an idea of what the network traffic looks like, what is more

29

common and how the following correlations (during the pre-processing phase) can be
explained.

A list of all the services can be found in the NSL-KDD can be found in Annex B: table of all the
services in the NSL-KDD dataset. In this section, a brief presentation of the protocols and
services is given, to present a picture of the characteristics of the dataset.

The protocols recorded in the dataset all belong to the transport layer of the OSI model and of
the TCP/IP stack [26], and the network layer (in OSI) or internet layer (in TCP/IP). The transport
layer, which is the most represented in the dataset, is responsible for process-to-process
delivery (by port number addressing), end-to-end connection between hosts, connecting
devices without considering the network fabric, multiplexing and demultiplexing, so that
different applications are simultaneously used over the network, congestion and flow control,
and data integrity/error correction.

In the NSL-KDD, three protocols are found:

TCP (Transmission Control Protocol): TCP is the most popular protocol of the transport layer
because it provides reliable transmission of all packages. It does so, by having an
acknowledgment signal for all received packets, and it resends the lost ones. While this is a
great advantage that provides a reliable and safe communication, it adds an additional
overhead due to these features. It is commonly used by protocols such as HTTP and FTP.

UDP (User Datagram Protocol): UDP, unlike TCP, doesn’t provide acknowledgement of the
received packets, thus the connection is not reliable, it relies on a “best effort” approach.
However, it is very simple and comes with much less overhead compared to other protocols.
it is most commonly used in streaming/real time services, such as video or voice streaming.

ICMP (Internet Control Message Protocol): ICMP is a network/internet layer protocol, despite
sometimes being perceived as a transfer layer one, as the internet layer depends on ICMP for
error and control messages (ping, traceroute, destination unreachable, etc.). It is mainly used
to determine whether or not data has reached its intended destination in a timely manner. In
the case of the NSL-KDD dataset, and TCP data dumps in general, ICMP is usually seen when
the packets are fragmented.

In the NSL-KDD dataset we can find most of the traffic using the TCP protocol, a smaller
percentage using UDP, and a small number of records being ICMP messages, with both the
training and the test sets behaving similarly (Table 3, Figure 1212 and Figure 1313):

Table 3: protocols in the NSL-KDD subsets

in training| % in training| # in test| % in test
Protocol
set set set set
TCP 102689 81,52% 18880 83,75%
UDP 14993 11,90% 2621 11,62%
ICMP 8291 6,58% 1043 4,63%

30

Protocols

100000 4
BOOOD 1
B0000
40000
20000 -
o | I |
p udp

icmp

Counts in dataset

Pratocol

Figure 12: protocols distribution in training set

Protocols
17500 -
15000 -
k: 12500 -
1]
=
c 10000 4
B
g 7500 -
5000 1
2500 A
0- T ——
tp udp icmp
Protocol

Figure 13: protocols distribution in test set

The services (column #2) are all about the application layer (top level in both the OSI and
TCP/IP models). In the dataset, there are protocols that enable capabilities such as email
exchange, website navigation, data storage and manipulation, DNS, etc. and work in a server-
client or a peer-to-peer philosophy.

Since the NSL-KDD is labelled with 70 different services, a list of them and their encounters in
the datasets is going to be given in Annex B. Below, are the diagrams produced from counting
all the featured services, to get an idea of what applications are the most common in the
network. We can see that, in both the training (Figure 1414) and test set (Figure 1515), http
(communication between web clients and servers) and private network (e.g. VPN) traffic
accounts for about half of the total traffic, followed by domain requests and telnet respectively.

31

Service

Service

Ida
netbios dgm
sOnFpc
netbios_ssn
nefsta
netbios

courier
name
echo

http_ 443
Time
netbios ns
snet_ns

netstat
discard

ssh

nethios _dgm
shell

i
I‘Dsll'laLI"n.pE'S
Klogin

At

Ildag

nef

sushell
pn_dump
netbios_ssn
11
rEmote_on2:|
plD‘I’FEC
printer

P_u

e

Hm_i
tfp T

Types of services counterplot (training set)

Types of services rates (training set)

private

domain_u

fip_data

eco i fi g
X inger
other e tEinet

5000 10000 15000 20000 25000 30000 35000
Counts in dataset

=]

Figure 14: services distribution in training set

Types of services counterplot (test set)

Types of services rates {test set)

private

domain_u ftp_data

40000

T T T T T
1000 2000 3000 4000 5000 BOOD FO00
Counts in dataset

=]

Figure 15: services distribution in test set

32

T
8000

Flags are an important feature of the connection, as they describe whether the connection was
established, terminated, or rejected normally. In the NSL-KDD dataset, there are 11 different
flags that are found in both the training and the test sets. It is shown in the figures below
(Figure 166, Figure 177) that the two subsets have different distributions of the flags:

Flags (training set)

0000 4

GO000

Counts in dataset

= & =
[[g
= = =

20000 4

10000

s RE| RSTR RSTO S1 SH S2 RSTOSD 53 OTH
Types of flags

Figure 16: flags distribution in training set

Flags (test set)

14000

12000 A

10000 1

Counts in dataset

S RE] S0 RSTO RSTR S3 SH S S2 OTH RSTOSD
Tpes of flags

Figure 17: flags distribution in test set

33

The difference between the ratio of REJ and SO flags, which are the most prominent after the
SF flag, can be understood after looking at what each label means, in Table 4:

Table 4: flags in the NSL-KDD dataset

Name Meaning

SF | Normal establishment and termination

SO | Connection attempt, no reply

REJ | Connection attempt rejected

RSTR | Connection reset by the destination

RSTO | Connection reset by the source

S1 | Connection establishment, no termination

SH | Source sent a SYN and FIN, without a SYN-ACK from the destination

S2 | Connection established, close attempt from source but no reply

RSTOSO | Source sent a SYN and RST, without a SYN-ACK from the destination

S3 | Connection established, close attempt by destination but no reply

OTH | No SYN, just midstream traffic that is not later closed

In the test set, where the abnormal traffic is higher, it is natural to have more rejection flags,
whereas in the training set, where the normal traffic prevails, more connection attempts are
to be expected.

4.3. Pre-processing of the NSL-KDD dataset

One of the most important steps in creating a data science model is pre-processing the data.
Python is a language especially capable of handling tasks that have to do with data handling
and processing, and in this section, the preparation of the dataset is going to be described step
by step. Essentially, the dataset was imported to a Jupyter notebook as a dataframe, the
categorical variables were encoded as numerical ones, and the data was scaled so that it didn’t
bias the importance of each feature.

Firstly, the NSL-KDD dataset, as a set of .csv files (KDDTrain+ and KDDTest+), was loaded into
the notebook by using the pandas library. Pandas is a crucial library for most of the operations
done on the data, from reading/writing, to handling the dataset column by column and
encoding it.

Using pandas, the dataset was loaded into two dataframe type variables, one for the training
and one for the testing subset. Their lengths are 125,973 and 22,544 records respectively,
and they both have 43 columns (0 — 42).

Other than the two multiclass datasets (Figure 18), two more pairs of training — test dataframes
were created, one for binary classification (Figure 19), where #42 labels were turned into
‘normal’ and ‘abnormal’, and one for the 4-class classification (Figure 20), where #42 labels
were turned into ‘normal’, ‘DoS’, ‘Probe’, ‘R2L" and ‘U2R’ labels.

34

Below, are snapshots of the heads (first five rows) of all the dataframes, as they are displayed
in the Jupyter notebook:

df nsltrain:

0 1 2 3 4 5 § 7 8 9 .. 3 7 ¢
0 0 tep ftp data SF 491 6 0 0 0 0 ... 0.17
1 0 udp other SF 146 0 0 0 0 0 ... 0.00
2 0 tep private S0 0 0 0 0 0 0 ... 0.10
3 0 tep http SF 232 8153 0 0 0 0 ... 1.00
4 0 top http SF 189 420 0 0 0 0 ... l.00
36 37 38 39 40 41 4z

0 0.00 0.00 0.00 0.05 0.00 normal 20
1 0.00 0.00 0.00 0.00 0.00 normal 15
2 0.00 1.00 1.00 0.00 0.00 neptune 19
3 0.04 0.03 0.01 0.00 0.01 normal 21
4 0.00 0.00 0.00 0.00 0.00 normal 21

Figure 18: Multiclass training and test dataframes (heads)

df nsltrain binclas:

01 2 3 4 5 6 7 8 9 .33 34 350\ 5 ;| 13 34 35
0 0 tcp ftpdata SF 481 00 0 0 0 ... 017 0.03 0.17 0 g
1 0 udp other SF 146 00 0 0 0 ... 0.00 0.60 0.88 1 0
2 0 tcp private SO 0 0 0 0 0 0 ... 0.10 0.05 0.00 2 0
3 0 tep http SF 232 8153 0 0 0 0 ... 1.00 0.00 0.03 3 0
4 0 teop http SF 189 420 0 0 0 0 ... 1.00 0.00 0.00 4 13

36 37 38 39 40 41 42 42
0 0.00 0.00 0.00 0.05 0.00 normal 20 21
1 0.00 0.00 0.00 0.00 0.00 normal 15 21
2 0.00 1.00 1.00 0.00 0.00 abnormal 19 21
3 0.04 0.03 0.01 0.00 0.01 normal 21 13
4 0.00 0.00 0.00 0.00 0.00 normal 21 1

df nsltrain dclas:

01 2 3 4 5 6 71 8 ¢ .33 6 7 8 9
0 0 tcp ftpdata SF 491 o 0 0 0 0 ... 0.17 0
1 0 udp other SF 146 6 o0 0 0 0 ... 0.00
2 0 tep private SO 0 o 0 0 0 0 ... 0.10
3 0 top http SF 232 8153 0 0 0 0 ... 1.00
4 0 tep http SF 199 420 0 0 0 0 . 1.00 3 1 3
36 37 38 39 40 41 42 42
0 0.00 0.00 0.00 0.05 0.00 normal 20 21
1 0.00 0.00 0.00 0.00 0.00 normal 15 71
z 1.00 1.00 0.00 0.00 Dos 19 71
3 0.04 0.03 0.01 0.00 0.01 normal 21 15
4 0.00 0.00 0.00 0.00 0.00 normal 21 11

Figure 20: 4-class training and test dataframes (heads)

The difference between each pair of dataframes can be seen in column #41, where the traffic
type label has a different set of values.

The next step in the process is to clean any data with the wrong format, drop records with
missing values or redundant records. As was explained in a previous section, one of the things
that were upgraded from the KDD dataset is that all redundant data were deleted, so the
dataset has only unique records of traffic. After checking that there are no missing features,
no missing values, and no wrong formatted values in the dataset, some adjustments were
made to the dataframes. Firstly, the last column of the dataset, which is the difficulty level of
the records, was dropped, and saved separately into two lists, one for the training and one for
the test difficulty levels. The distributions of each difficulty list can be found in Figure 21 and
Figure 22, where we can see that most records have the highest score (21/21):

35

Difficulty level distribution (training set)

0000

S0000

40000

Counts in dataset

20000 4

10000

10000 4

a00d

G000

Counts in dataset

17 1 1z 14 11 15 10 9 T s a4 o 3 1 2
Difficulty level
Figure 21: difficulty distribution in training set
Difficulty lewvel distribution (test set)
14 1la 1= 1z 11 7 1o =] B o 3 9 = 4 1 2
Difficulty level

Figure 22: difficulty distribution in test set

Specifically, in the training set there are 62,557 records (out of 125,973), or 49.66%, and in
the test set 10,694 (out of 22,544 records), which amount to 47.44%. Difficulty level 18/21
follows in both subsets, with a presence of 20,667 (16.41%) and 2,967 (13.16%) respectively.

36

After separating column #42, one more was deleted from all the dataframes, column #19
(number of outbound commands in an ftp session). This column, which was all zeros, became
NaN during the correlation calculations, and also, it didn’t seem to offer any information to
the dataset.

4.3.1. One-hot encoding

After cleaning the data, the categorical variables need to be changed into numerical, in order
to be counted in the process of correlation calculations and then to be fed into the model. As
described before, there are four features in the dataset that represent classification: protocols,
services, flags, and attack types (see 4.2.1. Categorical features). While the first three are
common in all the dataframes created, the attack type makes it necessary to create different
encoded representations for each dataframe.

The way that the categorical features were encoded into numerical variables is through one-
hot encoding [27]. With one-hot encoding, specifically by creating dummy variables out of the
categorical ones, one label is turned into a vector of N-dimensions, where N is the number of
all the different values this categorical variable might have.

For example, in column #1 are the protocols used for each record. In the dataset, there are
three protocol categories: {TCP,UDP,ICMP}, and each record can have only one of these
values. The protocols, like all other categorical features in this dataset, do not have a
hierarchical relationship with each other, which means that they can’t be replaced by integer
values, like: {0, 1, 2}, as they would indicate an order to the different categories. With one-hot
encoding of the protocols, the categorical variables are turned into 3-dimensional vectors:
{[1,0,0],[0,1,0],[0,0,1]}. TCP is represented by [1,0,0], similarly UDP with [0, 1, 0] and
ICMP with [0,0,1]. As the name on-hot encoding suggest, each record must have all
dimensions zero, except for the one that represents its category.

With the .get_dummies method, the categorical features are all moved to the end of the
dataframe, and the one-hot encoded vectors are expanded as different columns. This is shown
in Table 5, where columns 0 and 4 — 40 are ordered the same as before, while columns 1
(protocols), 2 (services), and 3 (flags) have moved to the tail of the dataframe, and the
previously one-column-each feature has expanded to 3,70 and 11 columns respectively (in
the training set).

In the case of column 41 (type of traffic), it has expanded to different numbers of labels,
according to the classification. There are 23 traffic labels for the multiclass training set (in the
respective test set, there are 38 different labels), 2 labels for the binary classification and 5
labels for the four-class classification training and test sets.

One-hot encoding has a minor flow, which can cause a problem if not considered. As it was
mentioned, the number of traffic labels differs between the training set and the test set,
resulting in a different number of columns after the encoding. The same thing happens in the

37

case of the services feature (col. #2), where, in the training set we can find 70 different
services, and in the test set we find 64. This problem was later addressed, at the later steps of
the pre-processing, as the subsets were prepared to be fed into the models.

Table 5: labels of the dataframes before and after one-hot encoding

LeEes . . - Labels of calumns in binary Labels of columns in 4-class
of Labels of columns in multiclass training e - I L
columns e S e e classification training dat_aframe, classification training dat.aframe,
before after one-hot encoding after one-hot encoding
[0, 1, [0,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, [0,4,5,6,7,8,9,6 10,11, 12,13, 14, [0,4,5,6,7,8,9,6 10,11, 12,13, 14,
2,3, 17,18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 15,16, 17, 18, 20, 21, 22, 23, 24, 15,16, 17, 18, 20, 21, 22, 23, 24, 25,
4,5, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 25, 26,27, 28, 29, 30, 31, 32, 33, 26,27, 28, 29, 30, 31, 32, 33, 34, 35,
6,7, "1 icmp', "1 _tep', "1 _udp', '2_IRC', '2_X11", 34,35, 36, 37, 38, 39,40, 'l _icmp’, 36,37, 38,39,40,'1 icmp', 'l tcp',
8,9, '2 739 50','2_aol','2_auth','2_bgp', "1 tep', 'l udp', '2_IRC', '2_X11', "1 udp','2_IRC','2_X11','2 739 50',
10, 11, '2_courier', '2_csnet_ns', '2_ctf', '2_739 50','2_aol', '2_auth', '2_aol','2_auth', '2_bgp', '2_courier’,
12,13, '2_daytime', '2_discard', '2_domain', '2_bgp', '2_courier', '2_csnet_ns', '2_csnet_ns', '2_ctf', '2_daytime',
14, 15, '2_domain_u', '2_echo', '2_eco_i','2_ecr_i', '2_ctf', '2_daytime', '2_discard', '2_discard', '2_domain’,
16, 17, '2_efs','2_exec', '2_finger', '2_ftp', '2_domain', '2_domain_u', '2_domain_u', '2_echo', '2_eco_i',
18, 20, '2_ftp_data', '2_gopher', '2_harvest', '2_echo', '2_eco_i', '2_ecr_i', '2_ecr_i','2_efs', '2_exec', '2_finger',
21, 22, '2_hostnames', '2_http', '2_http_2784', '2_efs','2_exec', '2_finger', '2_ftp', '2_ftp', '2_ftp_data', '2_gopher’,
23, 24, '2_http_443','2_http_8001', '2_imap4', '2_ftp_data', '2_gopher’, '2_harvest', '2_hostnames', '2_http',
25, 26, '2_iso_tsap', '2_klogin', '2_kshell', '2_ldap', '2_harvest', '2_hostnames', '2_http_2784','2_http_443",
27,28, '2_link', '2_login', '2_mtp', '2_name’, '2_http', '2_http_2784", '2_http_8001', '2_imap4',
29, 30, '2_netbios_dgm', '2_netbios_ns', '2_http_443','2_http_8001', '2_iso_tsap', '2_klogin', '2_kshell',
31,32, '2_netbios_ssn', '2_netstat', '2_nnsp’, '2_imap4', '2_iso_tsap', '2_klogin', '2_ldap', '2_link", '2_login', '2_mtp',
33,34, '2_nntp', '2_ntp_u', '2_other', '2_kshell', '2_Idap', '2_link’, '2_name', '2_netbios_dgm’,
35, 36, '2_pm_dump', '2_pop_2','2_pop_3', '2_login', '2_mtp', '2_name’, '2_netbios_ns', '2_netbios_ssn',
37,38, '2_printer', '2_private', '2_red_i', '2_netbios_dgm', '2_netbios_ns', '2_netstat', '2_nnsp', '2_nntp',
39, 40, '2_remote_job', '2_rje', '2_shell', '2_smtp', '2_netbios_ssn', '2_netstat’, '2_ntp_u','2_other','2_pm_dump',
41] '2_sql_net', '2_ssh', '2_sunrpc', '2_supdup’, '2_nnsp', '2_nntp', '2_ntp_u', '2_pop_2','2_pop_3','2_printer',
'2_systat', '2_telnet', '2_tftp_u', '2_tim_i', '2_other','2_pm_dump', '2_pop_2', '2_private', '2_red_i',
'2_time', '2_urh_i','2_urp_i', '2_uucp', '2_pop_3','2_printer', '2_private', '2_remote_job', '2_rje', '2_shell',
'2_uucp_path', '2_vmnet', '2_whois', '2_red_i','2_remote_job', '2_rje’, '2_smtp', '2_sql_net', '2_ssh’,
'3_OTH', '3_REJ', '3_RSTO', '3_RSTOSO', '2_shell', '2_smtp', '2_sqgl_net’, '2_sunrpc', '2_supdup', '2_systat’,
'3_RSTR','3_S0','3_S1','3_S2','3_S3','3_SF, '2_ssh','2_sunrpc', '2_supdup’, '2_telnet', '2_tftp_u', '2_tim_i',
'3_SH','41_back', '41_buffer_overflow', '2_systat', '2_telnet’, '2_tftp_u', '2_time', '2_urh_i', "2_urp_i',
'41_ftp_write', '41_guess_passwd', '2_tim_i','2_time', '2_urh_i', '2_uucp', '2_uucp_path', '2_vmnet',
‘41 _imap', '41_ipsweep', '41_land’, '2_urp_i', '2_uucp', '2_uucp_path’, '2_whois', '3_OTH', '3_REJ', '3_RSTO',
'41_loadmodule', '41_multihop', '2_vmnet', '2_whois', '3_OTH, '3_RSTOSO', '3_RSTR', '3_S0', '3_S1',
'41_neptune', '41_nmap', '41_normal’, '3_REJ','3_RSTO', '3_RSTOSO', '3_S2','3_S3','3_SF', '3_SH',
'41_perl','41_phf', '41_pod', '3_RSTR!, '3_S0','3_S1','3_52", '41_DoS','41_Probe', '41_R2L,
'41_portsweep', '41_rootkit', '41_satan', '3_S3','3_SF','3_SH', '41_U2R','41_normal']
'‘41_smurf', '41_spy', '41_teardrop', '41_abnormal', '41_normal']
'41_warezclient', '41_warezmaster']
In loztal. In total: 144 In total: 123 In total: 126

4.3.2. Correlation

The encoded dataframe is now ready to have its correlation measured, since all the variables
are going to be taken into account. The pandas .corr function [28] is used to find the pair wise
correlation of all the columns in the dataset, thus the relationship between the features is
explored. If the categorical variables were not changed to numerical, they wouldn’t have been
considered during the calculations, so even the most interesting label, that of the type of
traffic, which is the goal of the model, wouldn’t be correlated with the features of the dataset.
Correlation was calculated for all the dataframes, so there are six figures in total, for multiclass
(Figure 23, Figure 24), binary (Figure 25, Figure 26) and 4-class (Figure 27, Figure 28)
classification.

38

Correlation in multiclass classification (training set)

Figure 23: correlation in multiclass training set

Correlation in multiclass classification (test set)

Figure 24: correlation in multiclass test set

39

Correlation in binary classification (training set)

Figure 25: correlation in binary training set

Correlation in binary classification (test set)

Figure 26: correlation in binary test set

40

Correlation in 4-class classification (training set)

Figure 27: correlation in 4-class training set

Correlation in 4-class classification (test set)

Figure 28: correlation in 4-class test set

41

The correlation ranges from —1 to +1. When it trends towards +1, it shows that the two
columns have a proportional relationship (when A T then B T). On the other hand, when
correlation is closer to —1, then the two columns have an inversed proportional relationship
to each other (when A T then B l). When two features have no relationship to each other, so
the way one changes doesn’t influence the other, correlation is 0. For the visualisation of
following graphs, a palette was chosen that highlights correlation the closeritisto +1 and —1,
while correlations close to 0 are dark.

The correlation calculations are done pairwise, which means that the product of this metric is
a matrix with dimensions # columns X # columns. This is why the diagonal highlighted in all
the graphs has correlation equal to 1, it calculates correlation between the column and itself.
Because of the difference in the resulting columns due to one-hot encoding, the correlation
matrices also have different sizes from each other, as is shown in Table 6 below:

Table 6: correlation matrices dimensions

Multiclass training set | 144 X 144
Multiclass test set | 153 x 153
Binary class training set | 123 x 123
Binary testset | 117 x 117

4-class training set | 126 X 126
4-class test set | 120 x 120

Using the seaborn python library, the matrices were visualised as heatmaps, where high
correlation (towards +1 and —1) has lighter hues the more it tends to +1, and darker the
more it nears 0.

It is clear and expected (since all the features apart from the traffic type are the same) that all
the dataframes behave the same way, with higher intercorrelation among the time-based and
host-based features (columns #21 — #40). Those are the features that also seem to be
influenced by the categorical features the most, as we can see in the bottom left of the
heatmaps. Another interesting thing we can see from the correlation heatmaps is that in the
multiclass set (Figure 23, Figure 24) in the last columns, where the encoded traffic types are,
the correlation is lower than in both the binary and the 4-class classifications; this is expected,
when the types of classifications are compared. What is interesting in the multiclass case, is
that the attacks show no correlation to each other, be it attacks of the same category or other
classes. In fact, the correlation between different classes of attacks in the 4-class classification
(Figure 277, Figure 288) seems to be higher than that of the multiclass separated attacks that
belong in the same class.

Thanks to the correlation between the features, especially the correlation between the traffic
type and the other features of each record, we can understand what makes the model classify
something as a DoS or a U2R attack, or as normal traffic.

42

4.3.3. Xand Y components, scaling the data

With the correlation of the NSL-KDD calculated, we saw the connection between the target
labels and the features of the dataset in each classification scenario, which features mostly
affect the prediction of the model. Now, the next step is to split the dataframes’ features
(columns 0 — 40) from the target labels (column 41), into X and Y components, so that they
can be used as input and output respectively for the models we use.

New instances of the dataframes are created by copying the first 40 columns of the original
training and test dataframes into x-train/x-test dataframe type variables, and the last column
(#41) into y-train/y-test variables (columns #19 and #42 are deleted). This is repeated for all
the different classification cases, even though the X component is essentially the same in all of
them. These variables are created from the dataframes as they were before one-hot encoding,
as it is easier to load them without minding the amount of encoded extra columns that are
created after it; thus, it is necessary to do the encoding again, but only on the X component
(columns 1,2 and 3), leaving the Y dataframe of traffic type labels a categorical list of one
column.

Next is the alignment of the training and test arrays, because the one-hot encoded training set
isa 125973 X 121 (records X columns) array, while the test is 22544 X 115. As they are, the
two arrays cannot be used by the same model; they must be uniform, as the structure of the
model recognises a specific form of input.

As was mentioned above, due to the one-hot encoding algorithm used, the categorical columns
move at the end of the features space and are expanded to all their unique labels as 1s and
Os. It is important to consider how the alignment occurs in a way that doesn’t disturb the
classes of each previously categorical variable. With the pandas method .align() it was possible
to add the extra columns at the right place (with the ‘outer’ join option) and add the value 0 to
them (with the fill value option), so that the extra categories not found in one of the dataframes
was added in between the rest of the particular categorical feature and conformed to the one-
hot way of encoding the variables. As a result, all the datasets were 125973 x 121 or
22544 x 121, and there was no NaN value in any of them.

After the alignment of the training and test datasets, the dataframes were scaled, using the
Standard Scaler from the sklearn.preprocessing library [29]. Scaling the numerical data is an
important step in pre-processing, as their different ranges and dimensions result in bias when
the weights of the model are calculated. The range of the different features, seen in Annex A
(Table9)is 0 — 1,379,963,888 in the case of column 4, but only 0/1 in all the binary variables,
or even hundredth decimals in the float variables that represent rates. No matter how few the
datapoints with values this far apart are, the model needs to be trained and validated on similar
sizes of data, so that the relationships between each record and each feature can be better
recognised.

43

Standard scaler follows the standard normal distribution to calculate the value of each
datapoint, which means that it takes mean = 0 and scales the data so that the total variance,
meaning the new range of the data, is = 1 (unit variance). The scaling is calculated as:

Equation 6: standard scaling equation

Where x"is the new scaled data, x is the data to be scaled, u is the mean of the training samples
and s is the standard deviation.

Standard scaling occurs in two steps for the training data, the fitting phase, and the
transformation phase. The fit(data) function is used to compute the mean and standard
deviation of each (numeric) feature, while transform(data) is used after the fitting to perform
the scaling of the data, using the variables calculated with the fit function. This way, the scaler
is trained (calculates u,s) on the training set, and then, with those parameters set, the
transformation is also applied on the test data. Thus, it is important to apply fit and transform
on the training data, but only transform on the test data, so that the model is not biased with
information from the test data. While theoretically, the training and test set might have mean
and deviation values that are very close, we shouldn’t let the model be influenced by the test
set distribution and features when it is training. Also, the test data should be scaled according
to the training set’s distribution parameters, so that its divergence from the original training
data is prominent and the model truly tested on unknown records.

After aligning and scaling the data, the dataset looks like this:

[[-0.11024922 — 0.0076786 — 0.00491864...—0.01972622 0.82515007 — 0.04643159]
[-0.11024922 —0.00773737 —0.00491864 ...—0.01972622 0.82515007 — 0.04643159]
[-0.11024922 —0.00776224 — 0.00491864...—0.01972622 —1.21190076 — 0.04643159]

[-0.11024922 —0.00738219 —0.00482315...—0.01972622 0.82515007 — 0.04643159]
[-0.11024922 —0.00776224 — 0.00491864...—0.01972622 —1.21190076 — 0.04643159]
[-0.11024922 —0.00773652 — 0.00491864 ...—0.01972622 0.82515007 — 0.04643159]]

Figure 29: training dataset (multiclass) after standard scaling

Now that the scaling of the data is finished, the training and test datasets are ready to be fed
into models for the three different classification scenarios (multiclass, binary, and 4-classes
classification), for the intrusion detection performance to be measured.

To sum up, this section describes the whole pre-processing phase of this project. We saw how
the data was loaded into dataframes and how the three kinds of classifications were created,
by changing the traffic type labels in column #41 into ‘normal’ and ‘abnormal’ in the case of
binary classification, or ‘normal’, ‘DoS’, ‘Probe’, ‘U2R" and ‘R2L" types of attacks in the 4 attack
classes. Then, the distribution of the categorical features, that describe the type of traffic, was
analysed, and the categorical variables of the dataframes were encoded into numerical values,
via one-hot encoding. Correlation calculations showed that the features that mostly affect the
type of traffic are the time- and host-based ones. After that, the datasets were split into X and

44

Y components, so that they are ready to be fed into the models, the X components were once

again one-hot encoded into numerical variables, and the training and test sets were aligned to
each other and scaled to unit variance using the standard scaler.

In the next section, the classification models are going to be tested out and evaluated on their
performance on the dataset.

45

5. Evaluation and results

The training and test datasets, which were pre-processed earlier (section 4.3. Pre-processing
of the NSL-KDD dataset) showed that they were very different from each other, especially
when it came to the distribution of the traffic type labels (Table 1) and of the difficulty levels
(Figure 21, Figure 2222). This divergence led to interesting results in the experimental phase of
this project, where the models described above (Classification models analysis) were put to
the test. It was observed that the test dataset, on which predictions were made, showed far
lower accuracy scores than the accuracy acquired during training. Naturally, overfitting was a
problem that was first addressed, but still the models seemed to stabilise at the performance
shown below, in Table 7. For a deeper view into the performance of the models and the effect
of the differences between the KDDTrain+ and KDDTest+ datasets, two cases were created: in
case A, the five models were applied to all the classification scenarios (multiclass, binary, 4-
class), using the KDDTrain+ as training dataset, and the KDDTest+ as test (validation) dataset,
as they were prepared during the pre-processing phase (4.3. Pre-processing of the NSL-KDD
dataset). In case B, the same models were used (mostly with the same parameters that
optimized their performance) on all the classifications, but here only the KDDTrain+ was used
as training and test set, by splitting it with the commonly used train_test_split [30] utility from
the sklearn library, after being pre-processed like before.

When the same algorithms were applied to case B, it showed that the models were working
exceptionally, as is shown in Table 8. Due to the very homogenous distribution of the training
and validation parts of the dataset, the performance both in training and testing phases is the
same and gets very high results.

Table 7: summary/comparison of classification algorithms performance in case A

CLASSIFICATION ALGORITHM | CLASS SCENARIO | TRAINING SET | TEST SET
o multi 0,99 0,70
+ LOGISTIC REGRESSION binary 0,97 0,75
Kt 4-class 0,99 0,76
§ multi 1,00 0,71
o 43 DECISION TREE binary 1,00 0,79
iy ;, 4-class 1,00 0,76
S 8 multi 0,99 0,72
S £ K NEAREST NEIBOURS binary 0,99 0,77
S w 4-class 0,99 0,74
= multi 0,77 0,53
W s GAUSSIAN NAIVE BAYES binary 0,34 0,55
2 4-class 0,65 0,42
< multi 1,00 0,72
a MULTI LAYER PERCEPTRON binary 1,00 0,79
© 4-class 1,00 0,77

46

Table 8: summary/comparison of classification algorithms performance in case B

CLASSIFICATION ALGORITHM | CLASS SCENARIO | TRAINING SET | TEST SET
- multi 0,99 0,99
i LOGISTIC REGRESSION binary 0,97 0,97
g 4-class 0,99 0,99
o multi 1,00 1,00
< £ | DECISION TREE binary 1,00 1,00
£s 4-class 1,00 1,00
S 2 multi 0,99 0,99
é 2 | K NEAREST NEIBOURS binary 0,99 0,99
P 4-class 0,99 0,99
w3 multi 0,76 0,76
-§ & | GAUSSIAN NAIVE BAYES binary 0,85 0,85
a 4-class 0,65 0,65
@ multi 1,00 1,00
§ MULTI LAYER PERCEPTRON binary 1,00 1,00
© A-class 1,00 1,00

Below (Figure 3030, Figure 31), we can see the accuracy scores of Table 7 and Table 8 in a diagram
form, where it is easier to see the difference between the two cases (using KDDTrain+ and
KDDTest+ versus splitting the KDDTrain+ dataset into training and test sets), but what is also
noticeable is the similarity in the behaviour of all the models between training and test
accuracy scores.

Models accuracy (separate training and test sets)

1

0,8
a"&“
< 06
Q
&
o 04
Q
(1]
0,2
0
= n = n = a = = n = = a
ZCEZCEZCEEEEEEE
= 5 3 fF 3 I B 3 2 i 2 3 3
LOGISTIC DECISION TREE K NEAREST GAUSSIAN NATVE MULTI LAYER
REGRESSION NEIBOURS BAYES PERCEPTRON

B TRAINING SET WTEST SET

Figure 30: accuracy scores of all models and classification scenarios for case A

47

Models accuracy (split training and test set)

1
0
0,
0
0,
0
= >
[1+]
o
: : =

S [=a] ™

accuracy (%)

[&s]

= & 7 = & 7 = & 7 = & 7 = a
: FE§ T E§ TR TR :EZE G

= < = < = < = < <
LOGISTIC DECISION TREE K NEAREST GAUSSIAN NATVE MULTI LAYER
REGRESSION MEIBOURS BAYES PERCEPTROMN

B TRAINING SET W TEST SET

Figure 31: accuracy scores of all models and classification scenarios for case B

It is important to emphasize that these are the final scores that the models obtained, as they
trended towards that value and stabalized there afterwards, with no more fine-tuning
happening, and those are the values that are the closest between the training and test sets.

5.1. Interpreting the Classification Reports

The classification reports, found in Annex C: list of all the classification reports, contain all the
information extracted from the model analysis, for the parameters that showed optimized
results. The report displays four columns of information, “precision”, “recall”, “f1 score” and
“support”. Since most of the models work in a one-against-all way (y = 1 -positive- if it is the
class we are looking for, y = 0 -negative- if it is any other class), there are four possible

outcomes of the algorithm calculation:

e True positive (TP): the entry was positive, and the model predicted positive.

e False positive (FP): the entry was negative, and the model predicted positive.
e False negative (FN): the entry was positive, and the model predicted negative.
e True negative (TN): the entry was negative, and the model predicted negative.

These four percentages that make up the model’s performance for each label, will be used to
create the three metrics of performance for the classification report [31][32][33].

Precision (Equation 7) is the measure of how accurate the model’s positive predictions are, how
much it’s able to avoid wrongly labelling something as positive:

48

true positive

precision = — —
true positive + false positive

Equation 7: precision equation

Recall (Equation 8) is the ability of the model to find all the positive values in the dataset for this
instance:

true positive

recall = — -
true positive + false negative

Equation 8: recall equation

F1-score (Equation 9) is the harmonic mean of precision and recall, and is a measure of the
model’s accuracy, for the classification of each instance:

2 _ precision - recall TP

1= Drecision=* + recall" _ precision + recall _ TP 4+ L (FP + FN)
2

Equation 9: F1-score - harmonic mean equation

Lastly, Support is simply the times that each specific class is encountered in the dataset, the
instances of each label. It is from those instances that the precision and recall are calculated
for each label of the dataset, in a binary way (one-against-all).

The average values of the report below the label-by-label metrics lead the results from binary
to multiclass classification [34]. Most importantly, accuracy (Equation 11,Equation 11) measures
the overall ability of the model to classify correctly over all of the values. If ¥, is the predicted
value of sample i and y; is the real value, then accuracy is defined as:

Nsamples—1

1
accuracy(y,9) = o z 1@, =)
samples

i=0
Equation 10: accuracy equation

Or more intuitively:

TP+ TN _correct classifications
TP+TN+FP+FN allclassifications

accuracy =

Equation 11: intuitive accuracy equation

Macro average is simply the mean of all the above binary metrics, for precision, recall and f-1
score respectively, taking all classes as of equal importance, which is often untrue, especially
in unbalanced datasets such as NSL-KDD; weighted average is the mean value of the binary
metrics, with each class’s score weighted by its presence in the dataset (the support value).
The weighted average is much closer to the accuracy score, as we can see in the classification

49

reports of our models, because of the imbalance of our dataset, and shows a quick evaluation
of the performance of each binary classification as a whole.

5.2. Evaluation and results compared to relevant research

In reality, case B is not very useful, because there is rarely any chance to encounter traffic data
so close to the training data of the model, especially with the rapid rate that network
exploitations evolve today; it was mostly done to test if there was an overfitting problem, as
validation for the training phase of the models, and to apply the same practices that are usually
done step-by-step in most machine learning projects, which usually split the original dataset
into training and test subsets.

The test set of the NSL-KDD, with its difference in the distribution of the labels , services, flags
and many more features, reflects more of the real world, and the performance of all the
models actually reaches almost the same levels as some of the latest research, even much
more complex and innovative models, like [35], [36], [12] and [9].

In [35], the best results of all are found, with a record 89% accuracy reached in a LSTM model.
Except that, they use a Deep CNN, combined with Denoising and Contractive AE in different
balances, and reach 81 — 85%. Using more classical approaches similar to ours, (kNN, DT,
MLP, RF) they reach 74 — 82% accuracy. [12] have the second best accuracy results, with their
implementation being an AE, followed by another sparse AE network, and for the output layer
they have put a LR classifier, that only provides binary classificaction. With these, they reach
87.2% accuracy. In [36], the input goes through multiple CNNs, a BLSTM and an attention
layer, in order to reach 84.2% accuracy. With traditional approaches (DT, MLP, RF), they
regach 72 — 78%. Lastly, in [9], they developed similar classifiers (DT, DNN) that reached 76 —
79%, and with PCA they reduced the features to 6, making accuracy drop to 71 — 75%.

[13] and [11] have made studies that are very similar to our own, but they use the whole NSL-
KDD dataset as one, and after the preprocessing phase, they split it into training and
validation/test subsets, like in our case B. The 99 — 99.6% accuracy obtained there in all the
classifiers tested looks like the results extracted from our models, found in Table 8. However,
the problem here lies with the real-life experience that case B-like experiments don’t provide.

Many similar projects can also be found in Github, since the NSL-KDD is a very popular dataset
for intrusion detection, some of which only utilise the KDDTrain+ 20Percent and
KDDTest+ 20Percent for easier and faster processing. Most such projects either have minimal
optimisation, and mostly analyse the NSL-KDD in depth, or develop only one method of a more
advanced technique (CNN, Autoencoder) to develop the model itself better.

In the next section, we will discuss the problems and limitations of this project, and future work
that could improve the work done.

50

6. Discussion and future work

Anomaly detection, and network security in general, is facing a lot of challenges. Some notable
ones are:

- The rapid development of networks today, which leads to a great increase of novel and
unknown attacks, that take advantage of new gaps and services.

- The ever growing reliance of our society on the Internet, where more and more data
are generated and handled every year, already barely within our processing
capabilities.

- The Internet of Things (loT), due to which devices of lower level, thus much less
processing power and capabilities, are connected to each other, leaving us exposed to
new security gaps that could even affect our health, other than our data.

- The unavailability of open network traffic datasets, especially more recent, that could
have newer attacks, because of security concerns and competition among service
providers, which could refresh the reserch domain.

- The incompetence that unsupervised learning still shows, even though it is very
appropriate for anomaly detection, because the performance of models with
unlabelled data cannot be tested correctly, while labelling whole datasets is a specially
time consuming and difficult process.

Further improvement on this particular project could include two types of upgrades. Firstly,
since the NSL-KDD dataset is already labelled, there are many unsupervised learning
mechanisms that could then be validated through the respective labels, including attention
mechanisms, autoencoders, and clustering methods that we could optimise and compare.
Even with supervised learning, a dive into more advanced DNN methodologies would provide
better results, and the models could be much more flexible; DNN techniques that could be
tested are Convolutions and Pooling methods, RNNs or LSTM approaches, etc. Deep Neural
Networks are a central part of the machine learning and Al research nowadays, naturally,
because of their flexible architecture, robust performance, and abundance of functions for
every part of the models. Using only the normal traffic of the dataset, as is done in [7], could
be very useful for unsupervised methods like autoencoders, that learn from the pattern of
normal data, and recognise anomalies based on their deviation from them.

The second course of action that could upgrade this project is data centric. With traffic data
captured via Wireshark, thanks to the IT department’s cooperation, we could use the headers,
the only part available to us because of privacy and security concerns, to create the features
of the NSL-KDD for the connections provided, or part of them; we have seen throughout the
pre-processing phase of our project that some variables influence the data more than others
(e.g. with correlation). With the dataset created from the recent traffic data, a whole process
of its own to accomplish, we have a potentially worthwhile sample of records, which would be
unlabelled. Thankfully, the University has a very secure network infrastructure, being a big
campus network where sensitive data moves around, so if we choose a node from the lower
levels of it, where the data is already filtered through the security solutions of the network, we

51

can assume that the vast majority of our data will be normal traffic, without any anomalies
present. This kind of data is exceptional to apply to autoencoder models, which learn from the
uniform structure of normal data and then recognise the anomalies from their deviation
compared to the rest.

A project like that would be good for more advanced research, which can manage both the
feature extraction, the data preparation and the advanced unsupervised models development,
since there are no labels to apply any supervised methods available. Still, there would be
problems and limitations with that kind of development too; namely, there is no way to know
if the model would work optimally, as we can’t extract the percentages of TP, FP, TN and FN
classifications without knowing for sure which datapoints are normal and abnormal traffic, and
to test the model would require us to create synthetic attack type of data, or find attack records
from available datasets and pre-process them so that they are uniform to our own unlabelled
data and tested through the model. This kind of work is too complex and meticulous for the
level of a master thesis.

o0oo0o0O0

To sum up, despite the challenges and limitations of anomaly detection in the domain of
network security, research advances along with machine learning and Al, applying the same
innovative methods. Unsupervised learning can be more useful in the real world, since the data
in uses don’t need to be labelled, and it can detect unknown and novel attacks. In spite of the
new wave of research focused on unsupervised learning in the past couple of years, there are
still problems and limitations, like mentioned above, and supervised learning, or at least
semi/self-supervised learning, still remain the most effective method to study the topic of
network security.

Even though the five algorithms are somewhat basic and outdated, this thesis provides results
at a satisfactory level, not far behind state-of-the-art experiments. Its benefits lie in the fact
that it utilizes one of the most popular datasets available, and goes through a thorough analysis
of it, and subsequently compares the performance of five algorithms of supervised learning
that are still very commonly used for classification problems and anomaly detection. Even with
this kind of approach, we can see that the results of our classifiers are very close to state-of-
the-art research, which indicates how useful these methods still are for anomaly detection.
There are many ways that the project can be improved in the future, either by developing more
advanced models and moving to unsupervised learning solutions, or by trying to create a new
dataset with similar features and apply unsupervised methods on it.

52

Annex A: table of the NSL-KDD features

Table 9: list of all the features in NSL-KDD

feature description type value range
0 duration time length of the connection continuous | integer 0-54451
1 protocol type protocol used in the connection categorical string NaN
2 service destination network service used categorical string NaN
3 flag status of the connection categorical string NaN
number of bytes transferred in a single connection . .
4 src bytes y - & continuous | integer | 0-1379963888
(source to destination)
number of bytes transferred in a single connection . .
5 dst bytes L y g continuous | integer 0-309937401
(destination to source)
if src. and dst. IP addresses and port numbers are equal . .
6 land P q binary integer Oor1l
then =1, else =0
wrong .) . .
7 number of wrong fragments in the connection discrete integer 0,1or3
fragment
number of urgent packets in the connection (urgent bit . .
8 urgent . & P (urg discrete integer 0-3
activated)
number of "hot" indicators in the content (enterin . .
9 hot . . . (§ continuous | integer 0-101
system dir., creating/executing programs)
num failed
10 logins count of failed login attempts continuous | integer 0-4
11 | loggedin if successful login status =1, else =0 binary integer Oor1l
num
12 . number of compromised conditions continuous | integer 0-7479
compromised
13 | root shell if root shell is obtained =1, else =0 binary integer Oorl
if "su root" command is attempted or used =1, else =0 . .
14 | su attempted . P discrete integer 0,1o0r2
(dataset also contains the value 2)
number of "root" accesses or operations performed as a . .
15 | num root . . continuous | integer 0-7468
root in the connection
num file
16 . number of the file creation operations in the connection continuous | integer 0-100
creations
17 | num shells number of shell prompts continuous | integer 0-2
num access .) . .
18 files number of operations on access control files continuous | integer 0-9
num outbound
19 cmds number of outbound commands in an ftp session continuous | integer 0
. . if the login belongs to the "hot" list (root/admin) =1, else . .
20 | is hot login -0 & & (/) binary integer Oor1l
21 | is guest login if the login is a "guest" =1, else =0 binary integer Oor1l

53

number of connections to the same destination host as

22 | count discrete integer 0-511
the current connection (in time window)
number of connections to the same service (port num. . .
23 | srvcount . - . (p) discrete integer 0-511
as the current connection (in time window)
ercentage of connections that have activated flags sO, .
24 | serror rate P & ! . V. W 8 discrete float 0.00-1.00
s1, s2 or s3 among the connections in count (col. 22)
t f ti that h tivated fl 0)
25 | srvserror rate percentage of connections tha . av<.e activated 17ags s+, discrete float 0.00-1.00
s1, s2 or s3 among the connections in srv count (col.23)
ercentage of connections that have activated the fla .
26 | rerror rate P & . . & discrete float 0.00-1.00
REJ among the connections in count (col.22)
ercentage of connections that have activated the fla .
27 | srvrerror rate P & . . & discrete float 0.00-1.00
REJ among the connections in srv count (col.23)
ercentage of connections that were to the same service .
28 | same srv rate P & . . discrete float 0.00-1.00
among the connections in count (col.22)
. ercentage of connections that were to different services .
29 | diff srv rate P & . . discrete float 0.00-1.00
among the connections in count (col.22)
srv diff host ercentage of connections that were to different .
30 P . & . . discrete float 0.00-1.00
rate machines among the connections in srv count (col.23)
number of connections with the same destination host IP . .
31 | dst host count discrete integer 0-255
address
dst host srv
32 count number of connections with the same port number discrete integer 0-255
h f i h h
33 dst host same perc.entage of connections t. at vyere to the same discrete float 0.00-1.00
srv rate services among the connections in dst host count (col.31)
h iff f i h iff i
34 dst host di percentage o conn.ectlo.nst at were to different services discrete float 0.00-1.00
srv rate among the connections in dst host count (col.31)
percentage of connections that were to the same
dst host same
35 services among the connections in dst host srv count discrete float 0.00-1.00
src port rate
(col.32)
dst host srv percentage of connections that were to different
36 destination machines among the connections in dst host discrete float 0.00-1.00

diff host rate

srv count (col.32)

54

dst host serror

percentage of connections that have activated the flag

37 rate s0, s1, s2, or s3 among the connections in dst host count discrete float 0.00-1.00
(col. 31)
dst host srv percentage of connections that have activated the flag
38 s0, s1, s2, or s3 among the connections in dst host srv discrete float 0.00-1.00
serror rate
count (col. 32)
39 dst host rerror | percentage of connectlgns that have activated the flag discrete float 0.00-1.00
rate REJ among the connections in dst host count (col.31)
dst host srv percentage of connections that have activated the flag .
4 . . fl .00-1.
0 rerror rate REJ among the connections in dst host srv count (col.32) discrete oat 0.00-1.00
41 | class type of traffic classification input categorical string NaN
42 | difficulty level | difficulty level discrete integer 0-21

55

Annex B: table of all the services in the NSL-KDD dataset

Table 10: list of all the services in the NSL-KDD

. in training in test . in training | .
service service in test set
set set set

http 40338 7853 name 451 37
private 21853 4774 mtp 439 32
domain_u 9043 894 echo 434 37
smtp 7313 934 klogin 433 21
ftp_data 6860 851 login 429 29
eco_i 4586 262 Idap 410 19
other 4359 838 netbios_dgm 405 25
ecr_i 3077 752 sunrpc 381 159
telnet 2353 1626 netbios_ssn 362 15
finger 1767 136 netstat 360 26
ftp 1754 692 netbios_ns 347 36
auth 955 67 ssh 311 26
Z39 50 862 45 kshell 299 24
uucp 780 50 nntp 296 21
courier 734 40 pop_3 264 1019
bgp 710 46 sql_net 245 18
whois 693 40 IRC 187 13
uucp_path 689 46 ntp_u 168 10
iso_tsap 687 48 rjie 86 8
time 654 36 pop_2 78 13
imap4 647 306 remote_job 78 14
nnsp 630 42 X11 73 15
vmnet 617 43 printer 69 11
urp_i 602 23 shell 65 16
domain 569 51 urh_i 10 0
ctf 563 41 red i 8 0
csnet_ns 545 34 tim_i 8 6
supdup 544 27 pm_dump 5 16
discard 538 26 tftp_u 3 1
http_443 530 36 aol 2 0
daytime 521 28 harvest 2 0
gopher 518 34 http_8001 2 0
efs 485 33 http_2784 1 0
systat 477 32
link 475 41
exec 474 27
hostnames 460 23

56

Annex C: list of all the classification reports

Below, there are two lists, containing all the classification reports that resulted from the
analysis of the classification models in the two different use cases. Further information about
the models and discussion of their performance can be found in section Classification models
analysis, as well as information about the interpretation of the classification reports.

C.1. Case A: using KDDTrain+ KDDTest+ as training and test sets

Logistic Regression:

Table 11: logistic regression on the multiclass training set

precision | recall | f1-score | support
back 0.99 0.97 | 0.98 974
buffer_overflow | 0.60 0.86 | 0.71 21
ftp_write 0.25 1.00 | 0.40 2
guess_passwd 0.98 0.96 | 0.97 54
imap 0.91 1.00 | 0.95 10
ipsweep 0.97 0.97 | 0.97 3617
land 0.61 0.85 |0.71 13
loadmodule 0.22 0.67 | 0.33 3
multihop 0.29 0.40 | 0.33 5
neptune 1.00 1.00 | 1.00 41223
nmap 0.96 0.93 | 0.94 1540
normal 1.00 0.99 |0.99 67470
perl 0.00 0.00 | 0.00 0
phf 1.00 1.00 | 1.00 4
pod 1.00 1.00 | 1.00 202
portsweep 0.98 1.00 | 0.99 2890
rootkit 0.20 0.50 | 0.29 4
satan 0.95 0.98 | 0.97 3520
smurf 1.00 0.99 | 0.99 2678
spy 0.00 0.00 | 0.00 0
teardrop 1.00 1.00 | 1.00 891
warezclient 0.82 0.88 | 0.85 833
warezmaster 0.80 0.84 | 0.82 19
accuracy 0.99 125973
macro avg 0.72 0.82 | 0.75 125973
weighted avg 0.99 0.99 | 0.99 125973

57

Table 12: logistic regression on the multiclass test set (validation)

precision | recall | f1-score | support
apache2 0.00 0.00 | 0.00 0
back 0.69 0.33 | 045 748
buffer_overflow | 0.05 0.50 | 0.09 2
ftp_write 0.00 0.00 | 0.00 0
guess_passwd 0.00 0.17 | 0.00 6
httptunnel 0.00 0.00 | 0.00 0
imap 0.00 0.00 | 0.00 49
ipsweep 0.97 0.76 | 0.85 181
land 0.43 1.00 | 0.60 3
loadmodule 0.00 0.00 | 0.00 2
mailbomb 0.00 0.00 | 0.00 0
mscan 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 2
named 0.00 0.00 | 0.00 0
neptune 0.99 0.93 | 0.96 4984
nmap 0.99 0.41 | 0.58 174
normal 0.93 0.66 | 0.77 13724
perl 0.00 0.00 | 0.00 0
phf 0.50 0.17 | 0.25 6
pod 0.95 0.71 |0.81 55
portsweep 0.92 0.50 | 0.64 290
processtable 0.00 0.00 | 0.00 0
ps 0.00 0.00 | 0.00 0
rootkit 0.08 0.06 | 0.07 16
saint 0.00 0.00 | 0.00 0
satan 0.96 0.62 | 0.75 1151
sendmail 0.00 0.00 | 0.00 0
smurf 1.00 0.65 | 0.79 1026
snmpgetattack | 0.00 0.00 | 0.00 0
snmpguess 0.00 0.00 | 0.00 0
sqlattack 0.00 0.00 | 0.00 0
teardrop 1.00 0.24 | 0.39 49
udpstorm 0.00 0.00 | 0.00 0
warezclient 0.00 0.00 | 0.00 75
warezmaster 0.00 1.00 | 0.00 1
worm 0.00 0.00 | 0.00 0
xlock 0.00 0.00 | 0.00 0
Xsnoop 0.00 0.00 | 0.00 0
xterm 0.00 0.00 | 0.00 0
accuracy 0.70 22544
macro avg 0.27 0.22 |0.21 22544
weighted avg 0.94 0.70 | 0.79 22544

58

Table 13: logistic regression on the binary training set

precision | recall | fl1-score | support
abnormal 0.97 0.98 | 0.97 57838
normal 0.98 0.97 | 0.98 68135
accuracy 0.97 125973
macro avg 0.97 0.97 | 0.97 125973
weighted avg | 0.97 0.97 | 0.97 125973

Table 14: logistic regression on the binary test set (validation)

precision | recall | fl1-score | support
abnormal 0.62 092 |0.74 8713
normal 0.93 0.65 | 0.76 13831
accuracy 0.75 22544
macro avg 0.77 0.78 | 0.75 22544
weighted avg | 0.81 0.75 | 0.76 22544

Table 15: logistic regression on the 4-class training set

precision | recall | f1-score | support
DoS 1.00 1.00 | 1.00 45984
Probe 0.96 0.98 | 0.97 11497
R2L 0.80 0.82 | 0.81 968
U2R 0.54 0.88 | 0.67 32
normal 0.99 0.99 | 0.99 67492
accuracy 0.99 125973
macro avg 0.86 0.93 | 0.89 125973
weighted avg | 0.99 0.99 | 0.99 125973

Table 16: logistic regression on the 4-class test set (validation)

precision | recall | fl1-score | support
DoS 0.84 0.92 | 0.88 6789
Probe 0.71 0.86 | 0.78 2005
R2L 0.04 0.50 | 0.08 238
U2R 0.34 0.74 | 0.47 31
normal 0.93 0.67 | 0.78 13481
accuracy 0.76 22544
macro avg 0.57 0.74 | 0.60 22544
weighted avg | 0.87 0.76 | 0.80 22544

59

Decision Tree:

Table 17: decision tree on the multiclass training set

precision | recall fl-score | support
back 1.00 1.00 1.00 956
buffer_overflow | 1.00 1.00 1.00 30
ftp_write 1.00 1.00 1.00 8
guess_passwd 1.00 1.00 1.00 53
imap 1.00 1.00 1.00 11
ipsweep 1.00 1.00 1.00 3608
land 1.00 0.82 0.90 22
loadmodule 1.00 1.00 1.00 9
multihop 1.00 1.00 1.00 7
neptune 1.00 1.00 1.00 41214
nmap 0.99 1.00 1.00 1485
normal 1.00 1.00 1.00 67342
perl 1.00 1.00 1.00 3
phf 1.00 1.00 1.00 4
pod 1.00 1.00 1.00 200
portsweep 1.00 1.00 1.00 2930
rootkit 0.90 1.00 0.95 9
satan 1.00 1.00 1.00 3632
smurf 1.00 1.00 1.00 2646
spy 1.00 1.00 1.00 2
teardrop 1.00 1.00 1.00 892
warezclient 1.00 1.00 1.00 890
warezmaster 1.00 1.00 1.00 20
accuracy 1.00 125973
macro avg 1.00 0.99 0.99 125973
weighted avg 1.00 1.00 1.00 125973

60

Table 18: decision tree on the multiclass test set (validation)

precision | recall | f1-score | support
apache2 0.00 0.00 | 0.00 0
back 0.81 0.48 | 0.60 607
buffer_overflow | 0.05 0.12 | 0.07 8
ftp_write 0.00 0.00 | 0.00 253
guess_passwd 0.03 1.00 | 0.06 37
httptunnel 0.00 0.00 | 0.00 0
imap 0.00 0.00 | 0.00 2
ipsweep 0.99 0.97 | 0.98 145
land 0.71 0.62 | 0.67 8
loadmodule 0.00 0.00 | 0.00 17
mailbomb 0.00 0.00 | 0.00 0
mscan 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 10
named 0.00 0.00 | 0.00 0
neptune 1.00 0.93 | 0.96 4990
nmap 0.99 0.95 | 0.97 76
normal 0.94 0.73 | 0.82 12623
perl 0.50 0.25 | 0.33 4
phf 0.50 1.00 | 0.67 1
pod 0.93 0.72 |0.81 53
portsweep 0.92 0.40 | 0.55 367
processtable 0.00 0.00 | 0.00 0
ps 0.00 0.00 | 0.00 0
rootkit 0.00 0.00 | 0.00 12
saint 0.00 0.00 | 0.00 0
satan 0.97 0.29 | 0.45 2457
sendmail 0.00 0.00 | 0.00 0
smurf 1.00 0.98 | 0.99 680
snmpgetattack | 0.00 0.00 | 0.00 0
snmpguess 0.00 0.00 | 0.00 0
spy 0.00 0.00 | 0.00 3
sqlattack 0.00 0.00 | 0.00 0
teardrop 1.00 0.24 | 0.39 49
udpstorm 0.00 0.00 | 0.00 0
warezclient 0.00 0.00 | 0.00 140
warezmaster 0.00 0.50 | 0.00 2
worm 0.00 0.00 | 0.00 0
xlock 0.00 0.00 | 0.00 0
Xsnoop 0.00 0.00 | 0.00 0
xterm 0.00 0.00 | 0.00 0
accuracy 0.71 22544
macro avg 0.28 0.25 | 0.23 22544
weighted avg 0.94 0.71 |0.79 22544

61

Table 19: decision tree on the binary training set

precision | recall | f1-score | support
abnormal 1.00 1.00 | 1.00 58637
normal 1.00 1.00 | 1.00 67336
accuracy 1.00 125973
macro avg 1.00 1.00 | 1.00 125973
weigthed avg | 1.00 1.00 | 1.00 125973

Table 20: decision tree on the binary test set (validation)

precision | recall | fl1-score | support
abnormal 0.66 0.96 |0.78 8879
normal 0.96 0.68 | 0.80 13665
accuracy 0.79 22544
macro avg 0.81 0.82 | 0.79 22544
weighted avg | 0.84 0.79 |0.79 22544

Table 21: decision tree on the 4-class training set

precision | recall | f1-score | support
DoS 1.00 1.00 | 1.00 45932
Probe 1.00 1.00 | 1.00 11657
R2L 1.00 1.00 | 1.00 995
U2R 1.00 0.98 | 0.99 53
normal 1.00 1.00 | 1.00 67336
accuracy 1.00 125973
macro avg 1.00 1.00 | 1.00 125973
weighted avg | 1.00 1.00 | 1.00 125973

Table 22: decision tree on the 4-class test set (validation)

precision | recall | fl1-score | support
DoS 0.80 0.96 | 0.87 6279
Probe 0.64 0.80 | 0.71 1929
R2L 0.08 0.98 | 0.14 222
U2R 0.25 0.55 | 0.35 31
normal 0.96 0.66 | 0.79 14083
accuracy 0.76 22544
macro avg 0.55 0.79 | 0.57 22544
weighted avg | 0.88 0.76 | 0.80 22544

62

K-nearest neighbours:

Table 23: knn on the multiclass training set

precision | recall | fl1-score | support
back 0.95 0.96 | 0.96 949
buffer_overflow | 0.00 0.00 | 0.00 0
ftp_write 0.00 0.00 | 0.00 0
guess_passwd 0.92 0.70 | 0.80 70
imap 0.00 0.00 | 0.00 0
ipsweep 0.94 0.98 | 0.96 3451
land 0.00 0.00 | 0.00 0
loadmodule 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 0
neptune 1.00 0.98 | 0.99 41898
nmap 0.96 0.95 | 0.95 1514
normal 1.00 0.99 |0.99 67620
perl 0.00 0.00 | 0.00 0
phf 0.00 0.00 | 0.00 0
pod 0.99 0.99 |0.99 201
portsweep 0.85 0.99 | 0.92 2529
rootkit 0.00 0.00 | 0.00 0
satan 0.92 0.98 | 0.95 3400
smurf 1.00 0.99 | 0.99 2680
spy 0.00 0.00 | 0.00 0
teardrop 0.99 1.00 | 1.00 884
warezclient 0.84 0.96 | 0.90 777
warezmaster 0.00 0.00 | 0.00 0
accuracy 0.99 125973
macro avg 0.49 0.50 | 0.50 125973
weighted avg 0.99 0.99 | 0.99 125973

63

Table 24: knn on multiclass test set (validation)

precision | recall | f1-score | support
apache2 0.00 0.00 | 0.00 0
back 0.89 0.40 | 0.55 804
buffer_overflow | 0.00 0.00 | 0.00 0
ftp_write 0.00 0.00 | 0.00 0
guess_passwd 0.30 0.99 |0.46 368
httptunnel 0.00 0.00 | 0.00 0
imap 0.00 0.00 | 0.00 0
ipsweep 0.96 0.79 | 0.87 173
land 0.00 0.00 | 0.00 0
loadmodule 0.00 0.00 | 0.00 0
mailbomb 0.00 0.00 | 0.00 0
mscan 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 0
named 0.00 0.00 | 0.00 0
neptune 1.00 0.86 | 0.93 5363
nmap 1.00 0.42 | 0.60 172
normal 0.96 0.69 | 0.80 13553
perl 0.00 0.00 | 0.00 0
phf 0.00 0.00 | 0.00 0
pod 0.88 0.69 | 0.77 52
portsweep 0.89 0.72 | 0.80 192
processtable 0.00 0.00 | 0.00 0
ps 0.00 0.00 | 0.00 0
rootkit 0.00 0.00 | 0.00 0
saint 0.00 0.00 | 0.00 0
satan 0.82 0.54 | 0.65 1105
sendmail 0.00 0.00 | 0.00 0
smurf 1.00 0.99 | 0.99 671
snmpgetattack | 0.00 0.00 | 0.00 0
snmpguess 0.00 0.00 | 0.00 0
sqlattack 0.00 0.00 | 0.00 0
teardrop 0.67 0.18 | 0.28 45
udpstorm 0.00 0.00 | 0.00 0
warezclient 0.00 0.00 | 0.00 46
warezmaster 0.00 0.00 | 0.00 0
worm 0.00 0.00 | 0.00 0
xlock 0.00 0.00 | 0.00 0
Xsnoop 0.00 0.00 | 0.00 0
xterm 0.00 0.00 | 0.00 0
accuracy 0.72 22544
macro avg 0.24 0.19 | 0.20 22544
weighted avg 0.94 0.72 |0.81 22544

64

Table 25: knn on binary training set

precision | recall | f1-score | support
abnormal 0.99 0.99 |0.99 58450
normal 1.00 0.99 |0.99 67523
accuracy 0.99 125973
macro avg 0.99 0.99 | 0.99 125973
weighted avg | 0.99 0.99 |0.99 125973

Table 26: knn on binary test set (validation)

precision | recall | f1-score | support
abnormal 0.66 0.92 |0.77 9182
normal 0.93 0.67 | 0.78 13362
accuracy 0.77 22544
macro avg 0.79 0.80 | 0.77 22544
weighted avg | 0.82 0.77 | 0.77 22544

Table 27: knn on 4-class training set

precision | recall | f1-score | support
DoS 1.00 0.99 |1.00 46282
Probe 0.96 0.99 |0.98 11296
R2L 0.93 0.94 | 0.93 984
U2R 0.38 0.69 | 0.49 29
normal 1.00 1.00 | 1.00 67382
accuracy 0.99 125973
macro avg 0.85 0.92 | 0.88 125973
weighted avg | 0.99 0.99 | 0.99 125973

Table 28: knn on 4-class test set (validation)

precision | recall | fl1-score | support
DoS 0.83 0.89 | 0.86 6900
Probe 0.53 0.66 | 0.59 1962
R2L 0.04 0.90 | 0.07 114
U2R 0.27 0.64 | 0.38 28
normal 0.93 0.66 | 0.77 13540
accuracy 0.74 22544
macro avg 0.52 0.75 | 0.53 22544
weighted avg | 0.86 0.74 | 0.78 22544

65

Gaussian Naive Bayes:

Table 29: Gaussian Naive Bayes on multiclass training set

precision | recall | f1-score | support
back 1.00 0.08 | 0.15 12087
buffer_overflow | 0.57 0.05 | 0.09 331
ftp_write 1.00 0.04 | 0.07 208
guess_passwd 1.00 0.95 | 0.97 56
imap 1.00 0.85 | 0.92 13
ipsweep 0.99 0.33 | 049 10793
land 1.00 0.72 | 0.84 25
loadmodule 0.78 0.03 | 0.05 265
multihop 0.43 0.04 | 0.07 83
neptune 1.00 1.00 | 1.00 41128
nmap 0.18 0.51 | 0.27 533
normal 0.65 0.98 |0.78 44889
perl 1.00 1.00 | 1.00 3
phf 1.00 1.00 | 1.00 4
pod 1.00 091 | 0.95 222
portsweep 0.87 0.59 |0.71 4312
rootkit 0.60 0.01 |o0.01 1109
satan 0.01 0.72 | 0.02 53
smurf 1.00 0.92 | 0.96 2861
spy 1.00 1.00 | 1.00 2
teardrop 1.00 0.29 | 0.45 3055
warezclient 0.35 0.12 | 0.18 2580
warezmaster 1.00 0.01 | 0.03 1361
accuracy 0.77 125973
macro avg 0.80 0.53 | 0.52 125973
weighted avg 0.85 0.77 | 0.73 125973

66

Table 30: Gaussian Naive Bayes on multiclass test set (validation)

precision | recall | f1-score | support
apache2 0.00 0.00 | 0.00 0
back 0.38 0.06 | 0.10 2358
buffer_overflow | 0.00 0.00 | 0.00 0
ftp_write 0.33 0.01 | 0.02 84
guess_passwd 0.02 1.00 | 0.04 27
httptunnel 0.00 0.00 | 0.00 0
imap 0.00 0.00 | 0.00 0
ipsweep 0.99 0.22 | 0.35 646
land 1.00 1.00 | 1.00 7
loadmodule 0.00 0.00 | 0.00 98
mailbomb 0.00 0.00 | 0.00 0
mscan 0.00 0.00 | 0.00 0
multihop 0.22 0.18 | 0.20 22
named 0.00 0.00 | 0.00 0
neptune 0.98 0.97 | 0.98 4701
nmap 1.00 0.41 | 0.58 179
normal 0.62 0.59 | 0.60 10215
perl 0.00 0.00 | 0.00 0
phf 0.50 1.00 | 0.67 1
pod 0.98 0.65 |0.78 62
portsweep 0.74 0.11 | 0.19 1070
processtable 0.00 0.00 | 0.00 0
ps 0.00 0.00 | 0.00 0
rootkit 0.15 0.00 |0.01 489
saint 0.00 0.00 | 0.00 0
satan 0.00 0.14 | 0.01 21
sendmail 0.00 0.00 | 0.00 0
smurf 0.98 0.97 |0.97 669
snmpgetattack | 0.00 0.00 | 0.00 0
snmpguess 0.00 0.00 | 0.00 0
sqlattack 0.00 0.00 | 0.00 0
teardrop 1.00 0.01 | 0.02 1335
udpstorm 0.00 0.00 | 0.00 0
warezclient 0.00 0.00 | 0.00 216
warezmaster 0.24 0.66 | 0.35 344
worm 0.00 0.00 | 0.00 0
xlock 0.00 0.00 | 0.00 0
Xsnoop 0.00 0.00 | 0.00 0
xterm 0.00 0.00 | 0.00 0
accuracy 0.53 22544
macro avg 0.26 0.20 | 0.18 22544
weighted avg 0.70 0.53 | 0.55 22544

67

Table 31: Gaussian Naive Bayes on binary training set

precision | recall | f1-score | support
abnormal 0.66 1.00 | 0.79 38781
normal 1.00 0.77 | 0.87 87192
accuracy 0.84 125973
macro avg 0.83 0.88 | 0.83 125973
weighted avg | 0.89 0.84 | 0.85 125973

Table 32: Gaussian Naive Bayes on binary test set (validation)

precision | recall | fl1-score | support
abnormal 0.22 0.98 | 0.36 2909
normal 0.99 0.49 | 0.66 19635
accuracy 0.55 22544
macro avg 0.61 0.74 | 0.51 22544
weigthed avg | 0.89 0.55 | 0.62 22544

Table 33: Gaussian Naive Bayes on 4-class training set

precision | recall | f1-score | support
DoS 0.89 0.99 | 0.93 41369
Probe 0.13 0.96 | 0.23 1594
R2L 0.51 0.02 | 0.04 25292
U2R 1.00 0.01 |0.02 5712
normal 0.58 0.75 | 0.65 52006
accuracy 0.65 125973
macro avg 0.62 0.54 | 0.38 125973
weighted avg | 0.68 0.65 | 0.59 125973

Table 34: Gaussian Naive Bayes on 4-class test set (validation)

precision | recall | fl-score | support
DoS 0.39 0.88 | 0.54 3346
Probe 0.08 0.91 |0.15 215
R2L 0.32 0.14 | 0.20 6499
U2R 0.67 0.04 | 0.08 1074
normal 0.55 0.47 | 0.50 11410
accuracy 0.42 22544
macro avg 0.40 0.49 | 0.30 22544
weighted avg | 0.46 0.42 | 0.40 22544

68

Multi-layer perceptron:

Table 35: MLP on multiclass training set

precision | recall | fl1-score | support
back 0.99 0.98 | 0.99 963
buffer_overflow | 0.77 1.00 | 0.87 23
ftp_write 0.75 1.00 | 0.86 6
guess_passwd 1.00 1.00 | 1.00 53
imap 1.00 0.92 |0.96 12
ipsweep 0.99 0.99 |0.99 3622
land 1.00 0.72 | 0.84 25
loadmodule 0.78 1.00 | 0.88 7
multihop 0.57 0.80 | 0.67 5
neptune 1.00 1.00 | 1.00 41215
nmap 0.96 0.99 | 0.98 1455
normal 1.00 1.00 | 1.00 67388
perl 1.00 1.00 | 1.00 3
phf 1.00 1.00 | 1.00 4
pod 0.99 1.00 | 0.99 198
portsweep 1.00 1.00 | 1.00 2927
rootkit 0.40 1.00 | 0.57 4
satan 0.99 1.00 | 0.99 3613
smurf 1.00 1.00 | 1.00 2640
spy 1.00 1.00 | 1.00 2
teardrop 1.00 1.00 | 1.00 892
warezclient 0.96 0.96 | 0.96 892
warezmaster 1.00 0.83 | 0.91 24
accuracy 1.00 125973
macro avg 0.92 0.96 | 0.93 125973
weighted avg 1.00 1.00 | 1.00 125973

69

Table 36: MLP on multiclass test set (validation)

precision | recall | f1-score | support
apache2 0.00 0.00 | 0.00 0
back 0.94 0.41 | 0.57 822
buffer_overflow | 0.05 0.50 | 0.09 2
ftp_write 0.33 0.01 |o0.01 131
guess_passwd 0.00 0.25 | 0.00 4
httptunnel 0.00 0.00 | 0.00 0
imap 0.00 0.00 | 0.00 32
ipsweep 0.97 0.83 | 0.90 165
land 1.00 0.39 | 0.56 18
loadmodule 0.00 0.00 | 0.00 9
mailbomb 0.00 0.00 | 0.00 0
mscan 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 10
named 0.00 0.00 | 0.00 0
neptune 1.00 0.95 | 0.98 4863
nmap 0.99 0.43 | 0.60 168
normal 0.97 0.68 | 0.80 13994
perl 0.50 0.33 | 0.40 3
phf 0.50 0.25 | 0.33 4
pod 0.88 0.71 | 0.78 51
portsweep 0.94 0.35 | 051 421
processtable 0.00 0.00 | 0.00 0
ps 0.00 0.00 | 0.00 0
rootkit 0.00 0.00 | 0.00 3
saint 0.00 0.00 | 0.00 0
satan 0.77 0.56 | 0.65 1025
sendmail 0.00 0.00 | 0.00 0
smurf 1.00 0.99 |0.99 674
snmpgetattack | 0.00 0.00 | 0.00 0
snmpguess 0.00 0.00 | 0.00 0
spy 0.00 0.00 | 0.00 32
sqlattack 0.00 0.00 | 0.00 0
teardrop 1.00 0.24 | 0.39 49
udpstorm 0.00 0.00 | 0.00 0
warezclient 0.00 0.00 | 0.00 10
warezmaster 0.04 0.72 | 0.08 54
worm 0.00 0.00 | 0.00 0
xlock 0.00 0.00 | 0.00 0
Xsnoop 0.00 0.00 | 0.00 0
xterm 0.00 0.00 | 0.00 0
accuracy 0.72 22544
macro avg 0.30 0.21 | 0.22 22544
weighted avg 0.96 0.72 |0.81 22544

70

Table 37: MLP on binary training set

precision | recall | fl1-score | support
abnormal 1.00 1.00 | 1.00 58571
normal 1.00 1.00 | 1.00 67402
accuracy 1.00 125973
macro avg 1.00 1.00 | 1.00 125973
weighted avg | 1.00 1.00 | 1.00 125973

Table 38: MLP on binary test set (validation)

precision | recall | f1-score | support
abnormal 0.66 0.97 |0.78 8769
normal 0.97 0.68 | 0.80 13775
accuracy 0.79 22544
macro avg 0.81 0.82 | 0.79 22544
weighted avg | 0.85 0.79 |0.79 22544

Table 39: MLP on 4-class training set

precision | recall | fl1-score | support
DoS 1.00 1.00 | 1.00 45902
Probe 1.00 1.00 | 1.00 11660
R2L 0.94 0.97 | 0.96 956
U2R 0.75 0.95 | 0.84 41
normal 1.00 1.00 | 1.00 67414
accuracy 1.00 125973
macro 0.94 0.98 | 0.96 125973
weighted avg | 1.00 1.00 | 1.00 125973

Table 40: MLP on 4-class test set (validation)

precision | recall | fl-score | support
DoS 0.82 0.97 | 0.89 6365
Probe 0.59 0.84 | 0.69 1686
R2L 0.11 0.79 | 0.19 391
U2R 0.31 0.88 | 0.46 24
normal 0.97 0.67 | 0.79 14078
accuracy 0.77 22544
macro avg 0.56 0.83 | 0.61 22544
weighted avg | 0.89 0.77 |0.80 22544

71

C.2. Case B: splitting the KDDTrain+ for training and test sets

Logistic Regression:

Table 41: logistic regression on the split multiclass training set

precision | recall | f1-score | support
back 0.99 0.95 | 0.97 790
buffer_overflow | 0.70 0.82 | 0.76 17
ftp_write 0.17 0.50 | 0.25 2
guess_passwd 0.97 0.93 |0.95 42
imap 0.38 1.00 | 0.55 3
ipsweep 0.97 0.97 | 0.97 2924
land 1.00 0.70 | 0.82 20
loadmodule 0.11 0.25 | 0.15 4
multihop 0.00 0.00 | 0.00 1
neptune 1.00 1.00 | 1.00 32966
nmap 0.95 0.92 | 0.94 1246
normal 0.99 0.99 |0.99 53988
perl 0.00 0.00 | 0.00 0
phf 1.00 0.57 | 0.73 7
pod 0.99 1.00 | 0.99 158
portsweep 0.98 1.00 | 0.99 2280
rootkit 0.17 0.33 | 0.22 3
satan 0.94 0.98 | 0.96 2780
smurf 1.00 0.99 |0.99 2164
spy 0.00 0.00 | 0.00 0
teardrop 1.00 1.00 | 1.00 731
warezclient 0.80 0.88 | 0.84 640
warezmaster 0.58 0.58 | 0.58 12
accuracy 0.99 100778
macro 0.68 0.71 | 0.68 100778
weighted 0.99 0.99 | 0.99 100778

72

Table 42: logistic regression on the split multiclass test set (validation)

precision | recall | f1-score | support
back 0.97 0.94 | 0.95 203
buffer overflow | 0.50 0.83 0.62 6
ftp_write 0.50 0.50 | 0.50 2
guess_passwd 0.77 1.00 | 0.87 10
imap 0.33 1.00 | 0.50 1
ipsweep 0.97 0.96 | 0.96 710
land 1.00 0.80 | 0.89 5
loadmodule 0.00 0.00 | 0.00 1
multihop 0.00 0.00 | 0.00 0
neptune 1.00 1.00 | 1.00 8266
nmap 0.98 0.92 | 0.95 309
normal 0.99 0.99 |0.99 13485
perl 1.00 1.00 | 1.00 1
phf 0.00 0.00 | 0.00 1
pod 0.98 1.00 | 0.99 40
portsweep 0.98 1.00 | 0.99 613
rootkit 0.00 0.00 | 0.00 1
satan 0.93 0.99 | 0.96 681
smurf 1.00 0.98 | 0.99 517
spy 0.00 0.00 | 0.00 0
teardrop 1.00 1.00 | 1.00 161
warezclient 0.82 0.87 |0.84 174
warezmaster 1.00 1.00 | 1.00 8
accuracy 0.99 25195
macro 0.68 0.73 | 0.70 25195
weighted 0.99 0.99 | 0.99 25195

73

Table 43: logistic regression on the split binary training set

precision | recall | fl1-score | support
abnormal 0.96 0.98 | 0.97 46228
normal 0.98 0.97 | 0.98 54550
accuracy 0.97 100778
macro avg 0.97 0.97 | 0.97 100778
weighted avg | 0.97 0.97 | 0.97 100778

Table 44: logistic regression on the split binary test set (validation)

precision | recall | f1-score | support
abnormal 0.97 0.98 | 0.97 11575
normal 0.98 0.97 | 0.98 13620
accuracy 0.97 25195
macro avg 0.97 0.97 | 0.97 25195
weighted avg | 0.97 0.97 | 0.97 25195

Table 45: logistic regression on the split 4-class training set

precision | recall | fl1-score | support
DoS 1.00 1.00 | 1.00 36845
Probe 0.96 0.98 | 0.97 9161
R2L 0.74 0.81 | 0.77 718
U2R 0.54 0.83 | 0.66 24
normal 0.99 0.99 | 0.99 54030
accuracy 0.99 100778
macro avg 0.85 0.92 | 0.88 100778
weighted avg | 0.99 0.99 | 0.99 100778

Table 46: logistic regression on the split 4-class test set (validation)

precision | recall | f1-score | support
DoS 1.00 0.99 |1.00 9191
Probe 0.96 0.98 | 0.97 2293
R2L 0.76 0.83 | 0.79 198
U2R 0.47 0.78 | 0.58 9
normal 0.99 0.99 | 0.99 13504
accuracy 0.99 25195
macro avg 0.84 0.91 | 0.87 25195
weighted avg | 0.99 0.99 |0.99 25195

74

Decision Tree:

Table 47: decision tree on the split multiclass training set

precision | recall fl-score | support
back 1.00 1.00 1.00 760
buffer_overflow | 1.00 1.00 1.00 20
ftp_write 1.00 1.00 1.00 6
guess_passwd 1.00 1.00 1.00 40
imap 1.00 1.00 1.00 8
ipsweep 1.00 1.00 1.00 2901
land 1.00 0.82 0.90 17
loadmodule 1.00 1.00 1.00 9
multihop 1.00 1.00 1.00 5
neptune 1.00 1.00 1.00 32955
nmap 1.00 1.00 1.00 1196
normal 1.00 1.00 1.00 53885
perl 1.00 1.00 1.00 2
phf 1.00 1.00 1.00 4
pod 0.99 1.00 1.00 159
portsweep 1.00 1.00 1.00 2307
rootkit 0.83 1.00 0.91 5
satan 1.00 1.00 1.00 2910
smurf 1.00 1.00 1.00 2141
spy 1.00 1.00 1.00 1
teardrop 1.00 1.00 1.00 731
warezclient 1.00 1.00 1.00 704
warezmaster 1.00 1.00 1.00 12
accuracy 1.00 100778
macro 0.99 0.99 0.99 100778
weighted 1.00 1.00 1.00 100778

75

Table 48: decision tree on the split multiclass test set (validation)

precision | recall | f1-score | support
back 1.00 0.99 |1.00 197
buffer_overflow | 0.80 0.73 | 0.76 11
ftp_write 0.00 0.00 | 0.00 4
guess_passwd 0.77 1.00 | 0.87 10
imap 1.00 1.00 | 1.00 3
ipsweep 0.99 0.99 | 0.99 704
land 0.75 0.60 | 0.67 5
loadmodule 0.00 0.00 | 0.00 4
multihop 0.00 0.00 | 0.00 0
neptune 1.00 1.00 | 1.00 8261
nmap 0.98 0.99 |0.98 290
normal 1.00 1.00 | 1.00 13457
perl 0.00 0.00 | 0.00 0
phf 0.00 0.00 | 0.00 2
pod 1.00 1.00 | 1.00 41
portsweep 0.99 0.99 | 0.99 627
rootkit 0.00 0.00 | 0.00 1
satan 0.99 0.99 |0.99 720
smurf 1.00 1.00 | 1.00 505
spy 0.00 0.00 | 0.00 1
teardrop 1.00 1.00 | 1.00 161
warezclient 0.97 0.99 |0.98 182
warezmaster 1.00 0.89 | 0.94 9
accuracy 1.00 25195
macro avg 0.66 0.66 | 0.66 25195
weighted avg 1.00 1.00 | 1.00 25195

76

Table 49: decision tree on the split binary training set

precision | recall | f1-score | support
abnormal 1.00 1.00 | 1.00 46897
normal 1.00 1.00 | 1.00 53881
accuracy 1.00 100778
macro avg 1.00 1.00 | 1.00 100778
weigthed avg | 1.00 1.00 | 1.00 100778

Table 50: decision tree on the split binary test set (validation)

precision | recall | fl1-score | support
abnormal 1.00 1.00 1.00 11736
normal 1.00 1.00 | 1.00 13459
accuracy 1.00 25195
macro avg 1.00 1.00 | 1.00 25195
weighted avg | 1.00 1.00 | 1.00 25195

Table 51: decision tree on the split 4-class training set

precision | recall | f1-score | support
DoS 1.00 1.00 | 1.00 36765
Probe 1.00 1.00 | 1.00 9314
R2L 1.00 1.00 | 1.00 780
U2R 1.00 0.97 | 0.99 38
normal 1.00 1.00 | 1.00 53881
accuracy 1.00 100778
macro avg 1.00 0.99 | 1.00 100778
weighted avg | 1.00 1.00 | 1.00 100778

Table 52: decision tree on the split 4-class test set (validation)

precision | recall | fl1-score | support
DoS 1.00 1.00 | 1.00 9164
Probe 0.99 1.00 | 0.99 2339
R2L 0.96 0.97 | 0.97 213
U2R 0.67 0.62 | 0.65 16
normal 1.00 1.00 | 1.00 13463
accuracy 1.00 25195
macro avg 0.92 0.92 | 0.92 25195
weighted avg | 1.00 1.00 | 1.00 25195

77

K-nearest neighbours:

Table 53: knn on the split multiclass training set

precision | recall | fl1-score | support
back 0.96 0.96 | 0.96 760
buffer_overflow | 0.00 0.00 | 0.00 0
ftp_write 0.00 0.00 | 0.00 0
guess_passwd 0.97 0.66 | 0.79 59
imap 0.00 0.00 | 0.00 0
ipsweep 0.93 0.99 |0.96 2728
land 0.00 0.00 | 0.00 0
loadmodule 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 0
neptune 1.00 0.98 | 0.99 33544
nmap 0.96 0.95 | 0.95 1217
normal 1.00 0.99 |0.99 54113
perl 0.00 0.00 | 0.00 0
phf 0.00 0.00 | 0.00 0
pod 0.99 0.98 | 0.98 161
portsweep 0.84 0.99 |0.91 1961
rootkit 0.00 0.00 | 0.00 0
satan 0.92 0.98 | 0.95 2726
smurf 1.00 0.99 |0.99 2171
spy 0.00 0.00 | 0.00 0
teardrop 0.99 1.00 | 1.00 725
warezclient 0.84 0.96 | 0.90 613
warezmaster 0.00 0.00 | 0.00 0
accuracy 0.99 100778
macro avg 0.50 0.50 | 0.49 100778
weighted avg 0.99 0.99 | 0.99 100778

78

Table 54: knn on the split multiclass test set (validation)

precision | recall | f1-score | support
back 0.94 0.98 | 0.96 189
buffer_overflow | 0.00 0.00 | 0.00 0
ftp_write 0.00 0.00 | 0.00 0
guess_passwd 0.85 0.55 | 0.67 20
imap 0.00 0.00 | 0.00 0
ipsweep 0.93 0.99 | 0.96 665
land 0.00 0.00 | 0.00 0
multihop 0.00 0.00 | 0.00 0
neptune 1.00 0.98 | 0.99 8411
nmap 0.97 0.94 | 0.96 302
normal 1.00 0.99 |0.99 13531
perl 0.00 0.00 | 0.00 0
pod 0.98 1.00 | 0.99 40
portsweep 0.84 1.00 | 0.91 524
rootkit 0.00 0.00 | 0.00 0
satan 0.91 0.98 | 0.94 672
smurf 1.00 0.97 |0.98 522
spy 0.00 0.00 | 0.00 0
teardrop 0.99 1.00 | 0.99 159
warezclient 0.83 0.96 | 0.89 160
warezmaster 0.00 0.00 | 0.00 0
accuracy 0.99 25195
macro avg 0.53 0.54 | 0.53 25195
weighted avg 0.99 0.99 | 0.99 25195

79

Table 55: knn on the split binary training set

precision | recall | f1-score | support
abnormal 0.99 0.99 |0.99 46759
normal 0.99 0.99 |0.99 54019
accuracy 0.99 100778
macro avg 0.99 0.99 | 0.99 100778
weighted avg | 0.99 0.99 |0.99 100778

Table 56: knn on the split binary test set (validation)

precision | recall | f1-score | support
abnormal 0.99 0.99 |0.99 11691
normal 0.99 0.99 | 0.99 13504
accuracy 0.99 25195
macro avg 0.99 0.99 | 0.99 25195
weighted avg | 0.99 0.99 |0.99 25195

Table 57: knn on the split 4-class training set

precision | recall | f1-score | support
DoS 1.00 0.98 | 0.99 37360
Probe 0.92 0.99 | 0.96 8647
R2L 0.81 0.94 | 0.87 676
U2R 0.00 0.00 | 0.00 0
normal 1.00 0.99 |0.99 54095
accuracy 0.99 100778
macro avg 0.75 0.78 | 0.76 100778
weighted avg | 0.99 0.99 | 0.99 100778

Table 58: knn on the split 4-class test set (validation)

precision | recall | fl1-score | support
DoS 1.00 0.98 | 0.99 9321
Probe 0.92 0.99 | 0.95 2165
R2L 0.79 0.92 | 0.85 183
U2R 0.00 0.00 | 0.00 0
normal 1.00 0.99 |0.99 13526
accuracy 0.99 25195
macro avg 0.74 0.78 | 0.76 25195
weighted avg | 0.99 0.99 |0.99 25195

80

Gaussian Naive Bayes:

Table 59: Gaussian Naive Bayes on the split multiclass training set

precision | recall | f1-score | support
back 1.00 0.08 | 0.15 9634
buffer_overflow | 0.35 0.09 | 0.14 82
ftp_write 1.00 0.04 | 0.08 147
guess_passwd 1.00 1.00 | 1.00 40
imap 1.00 0.80 | 0.89 10
ipsweep 0.99 0.31 | 047 9198
land 1.00 0.70 | 0.82 20
loadmodule 0.89 0.04 | 0.08 197
multihop 0.40 0.04 | 0.07 54
neptune 1.00 1.00 | 1.00 32873
nmap 0.18 0.43 | 0.26 510
normal 0.64 0.98 | 0.78 35421
perl 1.00 1.00 | 1.00 2
phf 1.00 1.00 | 1.00 4
pod 1.00 0.90 | 0.95 177
portsweep 0.89 0.58 | 0.70 3529
rootkit 0.83 0.00 |0.01 1108
satan 0.01 0.66 | 0.02 53
smurf 1.00 0.93 | 0.96 2307
spy 1.00 1.00 | 1.00 1
teardrop 1.00 0.30 | 0.46 2448
warezclient 0.37 0.13 | 0.20 1924
warezmaster 1.00 0.01 | 0.02 1039
accuracy 0.76 100778
macro avg 0.81 0.52 | 0.52 100778
weighted avg 0.85 0.76 | 0.72 100778

81

Table 60: Gaussian Naive Bayes on the split multiclass test set (validation)

precision | recall | f1-score | support
back 1.00 0.08 | 0.15 9634
buffer_overflow | 0.35 0.09 |0.14 82
ftp_write 1.00 0.04 | 0.08 147
guess_passwd 1.00 1.00 | 1.00 40
imap 1.00 0.80 | 0.89 10
ipsweep 0.99 0.31 | 047 9198
land 1.00 0.70 | 0.82 20
loadmodule 0.89 0.04 | 0.08 197
multihop 0.40 0.04 | 0.07 54
neptune 1.00 1.00 | 1.00 32873
nmap 0.18 0.43 | 0.26 510
normal 0.64 0.98 | 0.78 35421
perl 1.00 1.00 | 1.00 2
phf 1.00 1.00 | 1.00 4
pod 1.00 0.90 | 0.95 177
portsweep 0.89 0.58 | 0.70 3529
rootkit 0.83 0.00 |0.01 1108
satan 0.01 0.66 | 0.02 53
smurf 1.00 0.93 | 0.96 2307
spy 1.00 1.00 | 1.00 1
teardrop 1.00 0.30 | 0.46 2448
warezclient 0.37 0.13 | 0.20 1924
warezmaster 1.00 0.01 | 0.02 1039
accuracy 0.76 100778
macro avg 0.81 0.52 | 0.52 100778
weighted avg 0.85 0.76 | 0.72 100778

82

Table 61: Gaussian Naive Bayes on the split binary training set

precision | recall | f1-score | support
abnormal 0.67 1.00 | 0.80 31514
normal 1.00 0.78 | 0.87 69264
accuracy 0.85 100778
macro avg 0.83 0.89 | 0.84 100778
weighted avg | 0.90 0.85 | 0.85 100778

Table 62: Gaussian Naive Bayes on the split binary test set (validation)

precision | recall | fl1-score | support
abnormal 0.67 1.00 | 0.80 7876
normal 1.00 0.78 | 0.87 17319
accuracy 0.85 25195
macro avg 0.83 0.89 | 0.84 25195
weigthed avg | 0.90 0.85 | 0.85 25195

Table 63: Gaussian Naive Bayes on the split 4-class training set

precision | recall | f1-score | support
DoS 0.89 0.99 |0.94 33310
Probe 0.18 0.97 |0.30 1718
R2L 0.55 0.02 | 0.04 21711
U2R 1.00 0.01 |0.02 4102
normal 0.56 0.75 | 0.64 39937
accuracy 0.65 100778
macro avg 0.64 0.55 | 0.39 100778
weighted avg | 0.68 0.65 | 0.58 100778

Table 64: Gaussian Naive Bayes on the split 4-class test set (validation)

precision | recall | fl1-score | support
DoS 0.89 0.99 | 0.94 8266
Probe 0.19 0.97 | 0.32 456
R2L 0.57 0.02 | 0.04 5441
U2R 0.87 0.01 | 0.03 1017
normal 0.56 0.75 | 0.64 10015
accuracy 0.65 25195
macro avg 0.61 0.55 | 0.39 25195
weighted avg | 0.68 0.65 | 0.58 25195

83

Multi-layer perceptron:

Table 65: MLP on the split multiclass training set

precision | recall | fl1-score | support
back 0.99 1.00 | 1.00 755
buffer_overflow | 0.90 0.95 | 0.92 19
ftp_write 0.67 1.00 | 0.80 4
guess_passwd 1.00 1.00 | 1.00 40
imap 1.00 1.00 | 1.00 8
ipsweep 1.00 0.98 | 0.99 2935
land 1.00 0.70 | 0.82 20
loadmodule 0.78 1.00 | 0.88 7
multihop 0.40 1.00 | 0.57 2
neptune 1.00 1.00 | 1.00 32956
nmap 0.95 0.99 | 0.97 1152
normal 1.00 1.00 | 1.00 53990
perl 1.00 1.00 | 1.00 2
phf 1.00 1.00 | 1.00 4
pod 0.99 1.00 | 0.99 158
portsweep 1.00 1.00 | 1.00 2305
rootkit 0.67 1.00 | 0.80 4
satan 0.99 1.00 | 1.00 2886
smurf 1.00 1.00 | 1.00 2133
spy 1.00 1.00 | 1.00 1
teardrop 1.00 1.00 | 1.00 731
warezclient 0.88 0.95 | 0.91 650
warezmaster 1.00 0.75 | 0.86 16
accuracy 1.00 100778
macro avg 0.92 0.97 |0.93 100778
weighted avg 1.00 1.00 | 1.00 100778

84

Table 66: MLP on the split multiclass test set (validation)

precision | recall | f1-score | support
back 0.98 0.99 | 0.99 194
buffer_overflow | 0.50 0.62 | 0.56 8
ftp_write 0.50 0.50 | 0.50 2
guess_passwd 0.85 1.00 | 0.92 11
imap 1.00 1.00 | 1.00 3
ipsweep 0.99 0.97 | 0.98 718
land 1.00 0.80 | 0.89 5
multihop 0.00 0.00 | 0.00 0
neptune 1.00 1.00 | 1.00 8259
nmap 0.94 0.99 |0.96 279
normal 1.00 0.99 | 1.00 13499
perl 1.00 1.00 | 1.00 1
pod 0.98 1.00 | 0.99 40
portsweep 0.99 0.99 | 0.99 622
rootkit 0.00 0.00 | 0.00 0
satan 0.98 0.99 | 0.98 713
smurf 0.99 0.99 | 0.99 504
spy 0.00 0.00 | 0.00 0
teardrop 1.00 1.00 | 1.00 161
warezclient 0.86 096 |0.91 166
warezmaster 1.00 0.80 | 0.89 10
accuracy 1.00 25195
macro avg 0.79 0.79 | 0.79 25195
weighted avg 1.00 1.00 | 1.00 25195

85

Table 67: MLP on the split binary training set

precision | recall | f1-score | support
abnormal 1.00 1.00 | 1.00 46822
normal 1.00 1.00 | 1.00 53956
accuracy 1.00 100778
macro avg 1.00 1.00 | 1.00 100778
weighted avg | 1.00 1.00 | 1.00 100778

Table 68: MLP on the split binary test set (validation)

precision | recall | fl1-score | support
abnormal 1.00 1.00 1.00 11703
normal 1.00 1.00 1.00 13492
accuracy 1.00 25195
macro avg 1.00 1.00 | 1.00 25195
weighted avg | 1.00 1.00 | 1.00 25195

Table 69: MLP on the split 4-class training set

precision | recall | f1-score | support
DoS 1.00 1.00 | 1.00 36759
Probe 1.00 1.00 | 1.00 9308
R2L 0.96 0.94 | 0.95 793
U2R 0.86 0.91 |0.89 35
normal 1.00 1.00 | 1.00 53883
accuracy 1.00 100778
macro 0.96 0.97 | 0.97 100778
weighted avg | 1.00 1.00 | 1.00 100778

Table 70: MLP on the split 4-class test set (validation)

precision | recall | fl1-score | support
DoS 1.00 1.00 | 1.00 9165
Probe 0.99 0.99 | 0.99 2338
R2L 0.94 0.96 | 0.95 211
U2R 0.40 1.00 | 0.57 6
normal 1.00 1.00 | 1.00 13475
accuracy 1.00 25195
macro avg 0.87 0.99 | 0.90 25195
weighted avg | 1.00 1.00 | 1.00 25195

86

[1]

[2]

(3]

(8]

[9]

[11]

[12]

References

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network Traffic Anomaly Detection
and Prevention: concepts, techniques and tools. 2017. [Online]. Available:
http://www.springer.com/series/4198

S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez, and B. Rubinstein,
“Machine learning in network anomaly detection: A survey,” IEEE Access, vol. 9, pp.
152379-152396, 2021, doi: 10.1109/ACCESS.2021.3126834.

A. Drewek-Ossowicka, M. Pietrotaj, and J. Ruminski, “A survey of neural networks
usage for intrusion detection systems,” J Ambient Intell Humaniz Comput, vol. 12, no.
1, pp. 497-514, Jan. 2021, doi: 10.1007/s12652-020-02014-x.

R. Bala and R. Nagpal, “A review on KDDCUP99 and NSL-KDD dataset,” 2019, doi:
10.26483/ijarcs.v10i2.6395.

“What is Supervised Learning? | IBM.” https://www.ibm.com/cloud/learn/supervised-
learning

“Supervised Machine Learning: What is, Algorithms with Examples.”
https://www.guru99.com/supervised-machine-learning.html

A. Binbusayyis and T. Vaiyapuri, “Unsupervised deep learning approach for network
intrusion detection combining convolutional autoencoder and one-class SVM,” Applied
Intelligence, vol. 51, no. 10, pp. 7094-7108, Oct. 2021, doi: 10.1007/s10489-021-
02205-9.

T. Ergen and S. S. Kozat, “Unsupervised anomaly detection with LSTM neural
networks,” IEEE Trans Neural Netw Learn Syst, vol. 31, no. 8, pp. 3127-3141, Aug.
2020, doi: 10.1109/TNNLS.2019.2935975.

S. Rawat, A. Srinivasan, V. Ravi, and U. Ghosh, “Intrusion detection systems using
classical machine learning techniques vs integrated unsupervised feature learning and
deep neural network,” Internet Technology Letters, vol. 5, no. 1, Jan. 2022, doi:
10.1002/itl2.232.

R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. Abumallouh, “Deep and Machine
Learning Approaches for Anomaly-Based Intrusion Detection of Imbalanced Network
Traffic,” IEEE Sens Lett, vol. 3, no. 1, Jan. 2019, doi: 10.1109/LSENS.2018.2879990.

J. J. Estévez-Pereira, D. Fernandez, and F. J. Novoa, “Network Anomaly Detection Using
Machine Learning Techniques,” Aug. 2020, p. 8. doi:
10.3390/proceedings2020054008.

S. Gurung, M. K. Ghose, and A. Subedi, “Deep Learning Approach on Network Intrusion
Detection System using NSL-KDD Dataset,” Computer Network and Information
Security, vol. 3, pp. 8-14, 2019, doi: 10.5815/ijcnis.2019.03.02.

87

[13]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

0. Jamal Ibrahim et al., “Network intrusion detection: a comparative study of four
classifiers using the NSL-KDD and KDD’99 datasets,” J. Phys, p. 12043, 2022, doi:
10.1088/1742-6596/2161/1/012043.

A. Ng, “CS229 Lecture Notes - Supervised Machine Learning,” in Stanford Machine
Learning Course, 2019.

“Advantages and Disadvantages of Logistic Regression.”
https://ig.opengenus.org/advantages-and-disadvantages-of-logistic-regression/

“Machine Learning Decision Tree Classification Algorithm - Javatpoint.”
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

“K-Nearest Neighbours - GeeksforGeeks.” https://www.geeksforgeeks.org/k-nearest-
neighbours/

“What Is K-Nearest Neighbor? An ML Algorithm to Classify Data.”
https://learn.g2.com/k-nearest-neighbor

“Naive Bayes classifier - Wikipedia.”
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

“Gaussian Naive Bayes: What You Need to Know? | upGrad blog.”
https://www.upgrad.com/blog/gaussian-naive-bayes/#scroll-top

“Multilayer Perceptron Definition | DeepAl.” https://deepai.org/machine-learning-
glossary-and-terms/multilayer-perceptron

“Multilayer perceptron - Wikipedia.”
https://en.wikipedia.org/wiki/Multilayer_perceptron

“Why MultiLayer Perceptron/Neural Network?,” in MIT Media Lab MAS Project notes,

“Multilayer Perceptron (MLP) vs Convolutional Neural Network in Deep Learning | by
Unigtech | Data Science Bootcamp | Medium.” https://medium.com/data-science-
bootcamp/multilayer-perceptron-mlp-vs-convolutional-neural-network-in-deep-
learning-c890f487a8f1

“A Deeper Dive into the NSL-KDD Data Set | by Gerry Saporito | Towards Data
Science.” https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-
15c753364657

TuRua Quaotknc AN, “Alktua Emikowvwviag kat YrtoAoylotwy,”

“Creating dummy variables in Python - AskPython.”
https://www.askpython.com/python/examples/creating-dummy-variables

“pandas.DataFrame.corr — pandas 1.4.3 documentation.”
https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.corr.html

88

[36]

“sklearn.preprocessing.StandardScaler — scikit-learn 1.1.1 documentation.”
https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

“sklearn.model_selection.train_test_split — scikit-learn 1.1.1 documentation.”
https://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.htm|

“Understanding a Classification Report For Your Machine Learning Model | by Shivam
Kohli | Medium.” https://medium.com/@kohlishivam5522/understanding-a-
classification-report-for-your-machine-learning-model-88815e2ce397

“Compute Classification Report and Confusion Matrix in Python - GeeksforGeeks.”
https://www.geeksforgeeks.org/compute-classification-report-and-confusion-matrix-
in-python/

“sklearn.metrics.precision_recall_fscore_support — scikit-learn 1.1.1 documentation.”
https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.precision_recall _fscore support.
html#sklearn.metrics.precision_recall_fscore_ support

“3.3. Metrics and scoring: quantifying the quality of predictions — scikit-learn 1.1.1
documentation.” https://scikit-
learn.org/stable/modules/model_evaluation.html#accuracy-score

S. Naseer et al., “Enhanced network anomaly detection based on deep neural
networks,” IEEE Access, vol. 6, pp. 48231-48246, Aug. 2018, doi:
10.1109/ACCESS.2018.2863036.

T.Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep Learning Methods on Network
Intrusion Detection Using NSL-KDD Dataset,” /EEE Access, vol. 8, pp. 29575-29585,
2020, doi: 10.1109/ACCESS.2020.2972627.

89

