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Abstract 

With the rapid development of networks and Internet services, network security has gained 

increased momentum in the past few years. Consequently, Intrusion Detection Systems (IDS) 

must adapt to the increased need for a sufficient first line of defence against the ever-evolving 

threats landscape. By utilizing deep and machine learning techniques, IDSs have been focusing 

on anomaly detection, but there are still challenges in detecting attacks, especially rare or 

novel ones, due to the unavailability and imbalance of data. Furthermore, there are many 

attacks that have not yet been discovered and analysed, and they continue to evolve every 

day. In this thesis, the NSL-KDD dataset, one of the most popular benchmark datasets available, 

is analysed and used in five common supervised learning classification algorithms. Despite the 

simplicity of the models, they show a good performance that is almost on par with state-of-

the-art deep learning and unsupervised models, thus providing us with a coherent review of 

how machine learning is used for anomaly detection and where it can go from there. 

 

Περίληψη 

Mε την ραγδαία ανάπτυξη των δικτύων και των υπηρεσιών μέσω Διαδικτύου, η ασφάλεια έχει 

αποκτήσει μεγάλη ώθηση τα τελευταία χρόνια. Συνεπώς, τα Συστήματα Ανίχνευσης Εισβολών 

(ΣΑΕ) πρέπει να προσαρμοστούν στην αυξημένη ανάγκη για μια επαρκή πρώτη γραμμή 

άμυνας του δικτύου ενάντια στις συνεχώς εξελισσόμενες απειλές. Με τη χρήση τεχνικών 

βαθιάς και μηχανικής μάθησης, τα ΣΑΕ έχουν επικεντρωθεί σε λειτουργίες ανίχνευσης 

ανωμαλιών, όμως υπάρχουν ακόμα προκλήσεις στην αναγνώριση επιθέσεων, ειδικά όταν 

είναι πιο σπάνιες ή καινούριες, λόγω της μη διαθεσιμότητας δεδομένων, και την άνιση 

κατανομή των δεδομένων. Επιπλέον, υπάρχουν πολλές επιθέσεις που ακόμα δεν έχουν 

ανακαλυφθεί και αναλυθεί, οι οποίες εξελίσσονται καθημερινά. Σε αυτή την εργασία το 

πακέτο δεδομένων NSL-KDD, ένα από τα πιο διαδεδομένα διαθέσιμα πακέτα, αναλύεται και 

έπειτα χρησιμοποιείται για την αξιολόγηση πέντε μοντέλων ταξινόμησης επιβλεπόμενης 

μηχανικής μάθησης. Παρόλη την απλότητα των μοντέλων, καταφέρνουν να φτάσουν σε καλή  

απόδοση, συγκρίσιμη με state-of-the-art μεθόδων βαθιάς και μη επιβλεπόμενης μάθησης, 

προσφέροντας έτσι μια συνοπτική συγκεντρωτική επισκόπηση του πώς χρησιμοποιείται η 

μηχανική μάθηση στην ανίχνευση ανωμαλιών, και πώς μπορεί να εξελιχθεί ακόμα 

περισσότερο.     
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Εκτεταμένη περίληψη 

Οι περισσότερες διαδικασίες και υπηρεσίες σήμερα γίνονται μέσω του Διαδικτύου. Η 

δικτύωση έχει αναπτυχθεί πολύ τα τελευταία χρόνια, και θα συνεχίσει να εξελίσσεται, χάρη 

στην ευρεία εφαρμογή του 5G δικτύου και την έρευνα που ήδη γίνεται στο 6G. Λόγω του 

σημαντικού ρόλου που παίζουν τα δίκτυα και το διαδίκτυο στην κοινωνία μας, η 

κυβερνοασφάλεια έχει γίνει ζωτικής σημασίας για την προστασία των δεδομένων και των 

συσκευών μας. Τα Συστήματα Ανίχνευσης Εισβολών (ΣΑΕ) αποτελούν σημαντικό κομμάτι τόσο 

της ασφάλειας, όσο και της ίδιας της δομής του δικτύου, καθώς μπορούν να ανιχνεύσουν και 

να αποτρέψουν κακόβουλα προγράμματα και χρήστες από το να παραβιάσουν το δίκτυο, και 

να σταματήσουν διάφορα είδη επιθέσεων προτού αποδειχθούν επικίνδυνες. Με τη ραγδαία 

εξέλιξη της μηχανικής μάθησης και της τεχνητής νοημοσύνης, η δομή των ΣΑΕ αλλάζει από 

τεχνικές βασισμένες σε «υπογραφές», δηλαδή που αναγνωρίζουν συγκεκριμένα μοτίβα 

γνωστών επιθέσεων, σε πιο αφηρημένες/γενικευμένες μορφές λειτουργίας βασισμένης σε 

αναγνώριση ανωμαλιών, οι οποίες ταξινομούν την κίνηση ως φυσιολογική ή επικίνδυνη. 

Οι ανωμαλίες ενός δικτύου μπορεί να προέρχονται από κακόβουλες δραστηριότητες που 

εκμεταλλεύονται υπηρεσίες δικτύου, υπερφόρτωση από δεδομένα, δυσλειτουργικές 

συσκευές και υπονόμευση διαφόρων παραμέτρων του δικτύου [1], και μπορεί να σχετίζονται 

είτε με τις επιδόσεις του (π.χ. υπερχείλιση δεδομένων λόγω κάποιας υπολειτουργικής 

μονάδας του δικτύου) είτε με την ασφάλεια (π.χ. εκ προθέσεως υπερχείλιση του δικτύου ώστε 

οι χρήστες να μην έχουν πρόσβαση στις υπηρεσίες). Τα ΣΑΕ μπορούν να ανιχνεύσουν 

οποιαδήποτε απόκλιση από την φυσιολογική συμπεριφορά, για αυτό είναι καλύτερα από τα 

κλασσικά συστήματα υπογραφών στο να ανιχνεύουν καινούριες ή άγνωστες επιθέσεις, αυτό 

όμως έρχεται με το κόστος ότι δίνουν περισσότερες λανθάνουσες ειδοποιήσεις. 

Το NSL-KDD πακέτο δεδομένων είναι ένα από τα πιο συχνά χρησιμοποιούμενα πακέτα 

δεδομένων δικτύου, από όταν δημιουργήθηκε το 2009 [2][3][4]. Συνεχίζει μέχρι σήμερα να 

χρησιμοποιείται στην έρευνα σαν benchmark για μοντέλα ανίχνευσης ανωμαλιών στα δίκτυα, 

όπως στα παραπάνω άρθρα. Για αυτό, επρόκειτο για ένα εξαιρετικό πακέτο δεδομένων για τη 

σύγκριση των διαφόρων μοντέλων που δοκιμάστηκαν σε αυτήν την εργασία, για μια αξιόπιστη 

πηγή διαφόρων ειδών επιθέσεων και επιπέδων δυσκολίας ανίχνευσης, τόσο στο πακέτο της 

εκπαίδευσης όσο και του ελέγχου των μοντέλων. Επιπρόσθετα, οι διαφορές μεταξύ των δύο 

αυτών πακέτων παρείχαν μια πιο ρεαλιστική εικόνα της δυνατότητας των μοντέλων να 

ταξινομήσουν σωστά την κίνηση του δικτύου. 

Σε αυτή την εργασία, σκοπός είναι να χρησιμοποιηθεί το NSL-KDD για τη σύγκριση πέντε από 

τις πιο διαδεδομένες μεθόδους μηχανικής μάθησης σε εφαρμογές ταξινόμησης, οι οποίες 

είναι: logistic regression, k nearest neighbours, decision tree, Gaussian Naive Bayes και 

multilayer perceptron. Έτσι, στην ενότητα 2 βρίσκεται μια συνοπτική εισαγωγή στη μηχανική 

μάθηση για ανίχνευση ανωμαλιών, όπως και συναφής έρευνα που γίνεται τα τελευταία 

χρόνια. Επίσης, αναφέρονται τα προτερήματα του NSL-KDD. Η ενότητα 3 παρέχει πληροφορίες 

για τους πέντε αλγορίθμους που χρησιμοποιήθηκαν στην εργασία. Στην ενότητα 4, μετά τη 

δημιουργία τριών εκφάνσεων του πακέτου δεδομένων, έτσι ώστε να συγκριθούν τα 
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διαφορετικά σενάρια ταξινόμησης (όλες οι επιθέσεις, φυσιολογική/επικίνδυνη κίνηση, 4 

κατηγορίες επιθέσεων), το NSL-KDD αναλύεται και στη συνέχεια προετοιμάζεται για να 

εισαχθεί στα μοντέλα μηχανικής μάθησης. Τέλος, στην ενότητα 5 τα μοντέλα 

βελτιστοποιούνται, αξιολογούνται και τα αποτελέσματα συγκρίνονται με αυτά της σχετικής 

έρευνας, ενώ στην ενότητα 6 συζητούνται τα προβλήματα και οι περιορισμοί τόσο αυτού του 

πειράματος, όσο και της ανίχνευσης ανωμαλιών συνολικά, όπως και μελλοντική δουλειά πάνω 

στο αντικείμενο. 

Τα αποτελέσματα της έρευνας που έγινε παρουσιάζονται στην Εικόνα 1, όπου μπορούν άμεσα 

να συγκριθούν οι επιδόσεις του κάθε μοντέλου. Παρατηρούμε ότι έχουμε ακρίβεια 70 −

79%, με εξαίρεση τον αλγόριθμο Gaussian Naive Bayes, ο οποίος λειτουργεί με την 

προϋπόθεση ότι δεν έχουν καθόλου εξάρτηση η μία μεταβλητή του dataset από την άλλη, 

πράγμα που στην περίπτωσή μας δεν ισχύει καθόλου.  

 

Εικόνα 1: συνοπτικό διάγραμμα της επίδοσης όλων των μοντέλων ταξινόμησης, σε όλα τα σενάρια 
κατηγοριοποίησης της κίνησης δικτύου, με χρήση του KDDTrain+ για την εκπαίδευση των μοντέλων 

και του KDDTest+ για τον έλεγχο/επαλήθευση 

Η ακρίβεια αυτή των μοντέλων είναι συγκρίσιμη με την ακρίβεια που πετυχαίνουν μοντέλα 

συγγενούς έρευνας που γίνονται τα τελευταία χρόνια (βλ. ενότητα: 5.2. Evaluation and results 

compared to relevant research) παρόλο που στις περισσότερες περιπτώσεις εκείνων των 

προγραμμάτων χρησιμοποιούνται πολύ πιο σύνθετα, μεγάλα και βαθιά μοντέλα.  

Πιο συγκεκριμένα, στην πιο πρόσφατη παρόμοιας δομής έρευνα που αναλύθηκε 

([26][27][28][29]), χρησιμοποιούνται μοντέλα που περιέχουν καινοτόμες τεχνικές βαθιάς 

μάθησης, μεταξύ άλλων convolutional και contractive autoencoders (μέθοδοι αυτο-

επιβλεπόμενης και μη επιβλεπόμενης μάθησης αντίστοιχα), Deep Convolutional Neural 

Networks (CNNs),  Recurrent Neural Networks (RNNs), Long-Short Term Memory (LSTM), 
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μηχανισμοί προσοχής, κ.α.. Εκεί ακόμα επιτυγχάνεται ακρίβεια 75 − 89% ανάλογα με την 

περιπλοκότητα του εκάστοτε μηχανισμού και την εξαγωγή χαρακτηριστικών που έχει υποστεί 

το dataset. 

Μιας και πρόκειται για τόσο διαφορετικού βάθους και καινοτομίας μεθόδους, με λεπτομερή 

βελτιστοποίηση σε πολλά στάδια, η δική μας έρευνα, που έγινε με πολύ πιο απλά μέσα και 

τεχνικές και όμως βρίσκεται σε απόδοση κοντινή με το state of the art, μπορεί να αποτελέσει 

μια αξιόπιστη μελέτη των βασικών αυτών μεθόδων ταξινόμησης που χρησιμοποιήθηκαν, προς 

σύγκριση μεταξύ των αλγορίθμων, των διαφορετικών κατηγοριών κίνησης, και ανάλυση των 

μηχανισμών λειτουργίας τους. 

Η ανίχνευση ανωμαλιών και γενικότερα η κυβερνοασφάλεια αντιμετωπίζει ακόμα πολλές 

προκλήσεις. Αναφορικά, μερικές από αυτές είναι: 

- Η ραγδαία ανάπτυξη των δικτύων σήμερα, η οποία οδηγεί σε αύξηση των καινούριων 

και άγνωστων επιθέσεων που εκμεταλλεύονται καινούρια κενά και υπηρεσίες. 

- Η όλο και μεγαλύτερη εξάρτηση της κοινωνίας μας από το Διαδίκτυο, στο οποίο κάθε 

χρόνο παράγονται και διακινούνται πολύ περισσότερα δεδομένα, ήδη δύσκολα 

επεξεργάσιμα με τα σημερινά μέσα. 

- Το Διαδίκτυο των Αντικειμένων (Internet of Things – IoT), λόγω του οποίου συσκευές 

όλο και χαμηλότερου επιπέδου, άρα και με όλο και λιγότερες υπολογιστικές 

δυνατότητες, συνδέονται μεταξύ τους, αφήνοντάς μας εκτεθειμένους σε κενά 

ασφαλείας που θα μπορούσαν να έχουν επιπτώσεις ακόμα και στη σωματική μας 

υγεία, πέρα από την ασφάλεια των δεδομένων μας. 

- Η μη διαθεσιμότητα ανοιχτών πακέτων δεδομένων κίνησης δικτύου, ιδιαίτερα 

πρόσφατων, που θα περιέχουν πιο καινούριες επιθέσεις, λόγω ιδιωτικότητας, 

ανταγωνισμού των παροχών δικτύου, που θα μπορούσαν να ανανεώσουν τον χώρο 

της έρευνας. 

- Η ανεπάρκεια της μη επιβλεπόμενης μάθησης, παρόλο που ενδείκνυται για την 

ανίχνευση ανωμαλιών, καθώς από unlabelled δεδομένα δεν μπορούν οι ερευνητές να 

ξέρουν την πραγματική απόδοση της, ενώ ταυτόχρονα η δημιουργία labels (ετικετών) 

στα πακέτα αποτελεί μια ιδιαιτέρως δύσκολη και χρονοβόρα διαδικασία. 

Συνοψίζοντας, παρόλες τις προκλήσεις και τους περιορισμούς που αντιμετωπίζει η ανίχνευση 

ανωμαλιών στο χώρο της ασφάλειας δικτύων, η έρευνα αναπτύσσεται μαζί με τον τομέα της 

μηχανικής μάθησης και τεχνητής νοημοσύνης, ακολουθώντας τις πιο καινοτόμες μεθόδους. 

Η μη επιβλεπόμενη μάθηση μπορεί γίνει πιο χρήσιμη στον πραγματικό κόσμο, μιας και τα 

δεδομένα που χρησιμοποιεί δε χρειάζονται labelling, και μπορεί να ανιχνεύει άγνωστες και 

καινούριες επιθέσεις. Παρά την τάση που έχει ξεκινήσει τα τελευταία δύο χρόνια να 

διερευνηθούν οι τεχνικές μη επιβλεπόμενης μάθησης, η επιβλεπόμενη μάθηση παραμένει 

ακόμα ο κύριος τρόπος που μελετάται η ασφάλεια των δικτύων, και πέντε από τους πιο 

βασικούς αλγορίθμους μηχανικής μάθησης σε προβλήματα ταξινόμησης, αν και κάπως 

παρωχημένοι πια, μελετήθηκαν στα πλαίσια αυτής της διπλωματικής εργασίας, δίνοντας 

αποτελέσματα σε πολύ ικανοποιητικό επίπεδο.  
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1. Introduction 

In today’s world, most processes and services of everyday life pass through the Internet. 

Networking has advanced greatly in the past few years, and will continue to do so, with the 

vast implementation of 5G and 6G that is already being tested and researched. Because of the 

important role that networks and the Internet play in our society, cyber security has become 

vital for the protection of our data and devices. Intrusion Detection Systems (IDS) are an 

important part of cyber security and of the network’s infrastructure, as they can detect and 

prevent the malicious programs and users from breaching the network and stop various kinds 

of attacks before they pose a danger. With the rapid growth of machine learning and artificial 

intelligence (AI), IDSs have shifted from signature-based techniques, that work by recognising 

specific patterns in mostly known attacks, to more abstract anomaly-based detection, which 

classifies traffic as normal (safe) and abnormal (dangerous). 

Anomalies in a network can be caused by malicious activities that take advantage of network 

services, overload of traffic, malfunctioning devices and compromising various network 

parameters [1], and can be performance-related (e.g., traffic flooding because of a 

malfunctioning node) or security-related (e.g., intentional flooding of the network resources 

so that legitimate users cannot access the services). Anomaly detection systems can detect any 

kind of deviation from the normal behaviour, so they are better than more classical signature-

based systems at catching novel and unknown attacks; however, it comes at the cost of raising 

more false alarms. 

The NSL-KDD dataset is one of the most commonly used network traffic sets ever since its 

creation in 2009 [2][3][4]. It is still used in research as a benchmark for network traffic 

classification models, like all of the papers cited here. Thus, it provided an excellent dataset for 

the comparison of the different machine learning models tested, for a reliable source of 

different types of attack labels and high difficulty level of attacks in both the training and the 

test sets. In addition, the differences between the two subsets provided for a good real-world 

test of the models’ abilities to classify correctly. 

In this thesis, our objective is to use the NSL-KDD dataset to compare five of the most 

commonly used supervised learning classification models, which are: logistic regression, k-

nearest neighbours, decision tree, Gaussian Naïve Bayes, and the multi-layer perceptron. For 

this purpose, section 2 provides a brief introduction to machine learning techniques for 

anomaly detection, as well as relevant research that has been carried out in the past couple 

years; it also discusses the advantages of the NSL-KDD dataset. Section 3 gives more 

information on the five algorithms that are used for our experiment. In section 4, after creating 

three instances of the dataset, in order to compare the different classification scenarios 

(multiclass, binary, and 4-class classification), the NSL-KDD dataset is initially analysed and pre-

processed, and subsequently fed into the different models and optimised for best accuracy 

scores. Lastly, in section 5, the models are evaluated, and the results of this research discussed, 

and section 6 focuses on the problems that anomaly detection is still facing, as well as future 

work and research on the topic. 
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2. An overview of machine learning and anomaly detection 

research 

Machine learning has been one of the most rapidly advancing technologies for years now, and 

continues to grow even more, with the advancement of computational power, artificial 

intelligence (AI) and Internet of Things (IoT). In the domain of cyber security, machine learning 

has greatly influenced the way networks are protected, which is something crucial in the era 

of the Internet Services. 

Intrusion Detection Systems (IDS) are now capable of recognising unknown attacks that try to 

penetrate the network, by scanning the traffic for anomalies. Anomalies in the network are all 

instances in the data that do not conform to the behaviour exhibited by normal traffic [1]. 

There don’t necessarily have to be malicious attacks, as performance-related anomalies also 

occur in the network (traffic overload, malfunctioning devices, etc). However, anomalies in 

data can translate to significant and often critical problems with the information passed 

through the network. In network security, the anomalies researchers and the relevant systems 

are looking for are security-based, which means that they stem from malicious actions against 

the network. These intrusions to the network aim to compromise the confidentiality, integrity 

or availability of a system or service, by bypassing the security mechanisms built in the 

network’s infrastructure. As a result, security experts use IDS in order to protect the network 

from outside threats. 

An IDS is a software and/or hardware system that monitors the events occurring in a network 

and analyses them for signs of intrusion by unwanted traffic (malicious activity). IDSs can be 

signature-based, that can only detect known attacks, and need constant updating from the 

vendors in order to keep up with the rapidly growing new malware, or they can be anomaly-

based, which can capture any deviations from normal behaviour, and are better at recognising 

attacks that were previously unknown. However, they generate a large number of false alarms, 

due to the limitations of their capabilities and training. 

Anomaly detection IDSs rely heavily on machine learning, since their function is to classify data 

based on what is considered normal traffic and deviations from it. The fact that they require 

training is the reason they have limited capabilities still. There are four machine learning model 

categories that can be applied to anomaly detection: a) supervised, b) semi-supervised, c) 

unsupervised and d) hybrid training models. In supervised training, the IDS model trains on 

labelled data, from a dataset that contains both normal and malicious traffic and any unseen 

instance is compared to the model to determine which class it belongs to. In semi-supervised 

models, training data contains only normal data instances, thus it cannot differentiate between 

attack classes when it encounters malicious traffic, only normal and abnormal events. With 

unsupervised training methods, the model doesn’t require any training data, which would 

make it the most widely applicable way, but the unlabelled nature of the data makes them less 

useful and quantifiable in their performance. Naturally, the hybrid approach combines features 

of all the aforementioned methods, to create the optimal result for large scale applications. 
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In this thesis, the models that were developed and compared are all supervised learning 

algorithms, thus a more thorough explanation of the way this kind of machine learning works 

in our context will be given in the next section. 

 

2.1. Supervised machine learning 

Supervised anomaly detection systems are based on prior knowledge that they acquired during 

training. They build a predictive model that compares new instances with the existing classes 

(normal or abnormal traffic) and decides upon each event accordingly. 

Supervised machine learning is defined by the use of labelled data for training [5][6], that will 

help classify or predict accurately when the model is used. By the term label, it is implied that 

the training dataset includes input data and the corresponding outcome each entry should 

generate. As input data is fed to it during training, the model adjusts its weights 

(interconnections inside its nodes) so that the outcome it produces matches the correct 

outcome as much as possible. This is measured through the use of a loss function that 

calculates the deviation between the produced result and the correct result. The goal of 

training is to minimize the loss function. 

There are two categories that supervised learning applies to: classification and regression. In 

regression problems, the model needs to understand the relationship between the dependent 

values and the independent ones. It is usually applied when we want to make future 

projections, like weather prediction, stock prices, business revenue, etc. On the other hand, in 

classification applications, the model needs to understand what features make an instance the 

class it is, and assign the input data into the right categories, like the spam folder of our emails. 

Anomaly detection is a classification problem, and some of the most common supervised 

learning methods for classification are the ones that were used in our project, which are 

analysed in section 3. Classification models analysis. 

Supervised learning differs fundamentally from unsupervised learning, because, unlike with 

unsupervised learning, it uses labelled data. Unsupervised learning methods try to discover 

patterns in the data and cluster them or make associations. Each method has its own 

advantages and disadvantages, but let’s take a look at what these are for supervised learning 

methods. 

Disadvantages and challenges of supervised learning: 

- Creating labels for some datasets can be time consuming, or even impossible in some 

cases, due to the limited information available on the data. 

- Irrelevant input features can hinder the performance of the model greatly, as well as 

when unlikely, incomplete, or out of bounds values are inputted as training data. 

- When dealing with classification applications, representing all classes in a balanced way 

is a challenge and the performance of the model is lowered if the data is imbalanced. 
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That is especially true for big data analytics, where classification is sometimes 

impossible. 

- Models can be prone to overfitting, when the quality of the training data is not good 

enough, or when the hyperparameters of the model are not optimal. 

Advantages of supervised learning: 

- When prior knowledge and experience is important, supervised learning is the best way 

to create a model based on those characteristics, which will learn from experience. 

- Supervised learning helps optimise the performance of our model based on what 

features of the input data are selected. 

- It is helpful in various real-world computational problems that other methods are 

incompetent in, due to the lack of information during their training phases. 

Supervised learning is the most reliable way to create models, when it is important to know 

how well the algorithm used performs, how accurately it works. They are the best predictive 

models for many applications, but on the other hand, they require a lot of preparation and pre-

processing of the training data so that their results are not biased or overtrained. 

For anomaly detection, the problem with supervised training is that the process of assigning 

labels to traffic data is very time consuming and even impossible when dealing with unknown 

or novel attacks. However, unsupervised methods are not dependable as to their performance, 

because there is no way for the model to validate whether the traffic is really normal or not.  

 

2.2. Anomaly detection with machine learning: related research 

There have been many innovations in the field of anomaly detection in the past few years, 

using the NSL-KDD dataset. There are many unsupervised learning experiments, with 

autoencoder and one-class SVM combinations [2]. Convolutional autoencoders are used by [7] 

paired with a one-class SVM layer that classifies the data after the convolutional step of the 

model. In [2] we can also find that one-class SVM as well as autoencoders have been also used 

in self-supervised learning methodologies. One-class SVM has also been paired with 

Bidirectional LSTM methods in [8]. Neural networks have been used extensively in anomaly-

based intrusion detection, as is evident in [3], and DNNs have been tested with selective 

feature extraction [9]. 

There have been comparative studies such as our own too, in the past couple of years, namely 

[10][11][12][13], and we can also find more comparisons of such research projects in review 

studies [3][2]. Going beyond the NSL-KDD dataset there are many more articles, but for a 

consistent view of this research topic, we will stay with those projects that use the NSL-KDD as 

their dataset here. In section 5.2. Evaluation and results compared to relevant research there 

is a more thorough comparison between the methods that were developed in this thesis, and 

the state-of-the-art studies conducted lately, after our own results are extracted. 
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2.3. The advantages of the NSL-KDD dataset 

Lastly for this section, it is worthwhile to mention some more information on why the NSL-KDD 

was chosen and where it came from. The NSL-KDD was created in 2009, as an effort to 

overcome some of the limitations and problems that its ancestors, DARPA (1998) and 

KDDCup99 (1999), had. it is, like the original KDDCup99 before it, a publicly available dataset 

of network traffic data records, which contains a selected subset of the data in KDDCup99 [1]. 

The selection of that data occurred by applying some filters targeting the problematic instances 

in it, and at the same time, providing best practices for data mining to create the new dataset. 

So, the main advantages of using this dataset are: 

- It doesn’t include any redundant records in it, thus avoiding biasing toward more 

frequent records. 

- There are no duplicate records in the test set, so that the performance of the models 

is not biased by those with falsely higher detection rate. 

- The number of selected records from each difficulty level is inversely proportional to 

the percentage of records in the original KDDCup99, therefore the classification rates 

of various machine learning methods vary in a wider range. 

- Opposite to the KDDCup99, that had millions of data records in it, both the KDDTrain+ 

and the KDDTest+ have a reasonable amount of records in them, making it affordable 

to run experiments on the complete datasets instead of selecting a random small 

portion of it. That is why evaluation results of different research groups are consistent 

and comparable (like it happens with our models). 

The NSL-KDD is not a perfect dataset, as it is quite outdated, and because it is a synthetic 

dataset. There is, however, much value in those rare, good datasets that are available, even if 

they are old. Firstly, they are already labelled, a process that is very time consuming or even 

impossible sometimes, which allows researchers to test supervised learning methods, or 

validate the unsupervised models more frequently used today. Benchmark datasets, like NSL-

KDD, are used for validation and evaluation of new approaches to intrusion detection, and 

comparison between different methods, old and new. They are also the only way to have 

repeatability in the experiments done over the years, especially because they are publicly 

available to all researchers. A rich in features dataset like NSL-KDD also allows different 

approaches to fine-tune into different parameters, and extract features for more light-weight 

models, or simply provide a base on which new datasets can be built. 

The network traffic datasets are valuable assets for IDS research. However, none of them can 

clearly represent the real-world traffic, as it is constantly evolving, and new attacks always 

appear (or haven’t been discovered yet). Apart from the privacy and security concerns that 

hinder the mining of real data, simulations are also difficult to do realistically. Evaluation of IDS 

datasets is challenged by all the difficulties in collecting attack and victim scripts, by the rapid 

speed at which attacks evolve and are produced, and also by the many different network 

services that not only make traffic more complex, but also leave new gaps for exploitation.  
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3. Classification models analysis  

In this section, the algorithms that were used for the classifications are going to be described 

and briefly analysed, to better understand the way they work and what the advantages and 

disadvantages of their use are. 

 

3.1. Logistic Regression 

Despite its name, logistic regression is a supervised classification algorithm, one that uses 

regression to calculate the probability that a specific data entry (input – 𝑋𝑖), belongs to 

category 𝑌𝑗. Describing it first as a binary classification problem, for an easier approach, will 

help us understand the mechanics of this algorithm, while its use can easily be expanded for 

multiclass classification problems, as multiclass classification (multinomial logistic regression) 

takes place the same way as binary, in a one-against-all way; this means that the class 

examined is classified as 1 whereas all other classes are considered 0 for the test (𝑔(𝑧)) of 

each specific entry. 

The function that logistic regression uses for the calculation of the probability is the sigmoid 

function [14]: 

𝑔(𝑧) =
1

1 + 𝑒−𝑧
 

Equation 1: logistic/sigmoid function 

 

Figure 1: sigmoid function graph (source [14]) 

It is noticeable from the graph of the function that when 𝑧 → ∞, then 𝑔(𝑧) tends toward 1 

and when 𝑧 → −∞ then 𝑔(𝑧) tends toward 0, which is why regression works well as a function. 
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The variable 𝑧 describes the input value, which is the variables vector of the entries 𝑋𝑖 =

{𝑥0, 𝑥1, … , 𝑥𝑛−1} (for 𝑛 number of features in the dataset) multiplied by weight values, that 

will be tweaked as the model tries to predict 𝑦 with respect to 𝑋𝑖. 

𝑦(𝑥) = 𝜃0𝑥0 + 𝜃1𝑥1 + ⋯ + 𝜃𝑛−1𝑥𝑛−1 = ∑ 𝜃𝑖𝑥𝑖

𝑛−1

𝑖=0

= 𝜃𝑇𝑋 

Equation 2: output y as a function of the input values X 

Thus, in the case of logistic regression, this abstract function becomes 𝑦 = 𝑔(𝜃𝑇𝑋𝑖). Through 

the training of the model, the weight values (𝜃𝑡) are randomly initialized and then change so 

that the loss function is minimized, and this sets the threshold for which 𝑦 = 1 or 𝑦 = 0. 

Logistic regression is one of the simplest machine learning algorithms, so it doesn’t need many 

conditions to generate satisfactory results and doesn’t require much CPU power usually. It also 

doesn’t overfit as much as more complex algorithms and can easily update with new data. 

Nevertheless, its simplicity hinders its performance on higher dimension datasets, and highly 

correlated variables in a dataset should be avoided; also, it needs to train with larger datasets 

without redundant records in them [15]. 

 

3.2. Decision Tree 

The decision tree classifier is a tree-shaped algorithm that is commonly used for classification 

applications.  

 

Figure 2: decision tree classifier representation (source [16]) 

The root node represents the beginning of the decision tree and includes the whole dataset. It 

gets further divided (splitting) as the algorithm poses conditions to the dataset that create sub-

classes according to the outcome of each entry. Through the splitting process, branches are 

created, as different classes of data follow different paths. The leaf nodes represent the 
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outcomes of the classification process, when the model cannot further classify the subset that 

has gone that way. Another process for correcting the model and minimizing error is pruning, 

which cuts out the branches that don’t have any data and keeps the optimal tree paths [16]. 

The decision tree is a simple algorithm that mimics the way humans make decisions, so it can 

be very useful in decision-related problems, and its simplicity also requires less cleaning and 

preparing for the data. However, when the dataset contains many labels, the classifier is prone 

to overfitting, and its complexity becomes very high when there are many layers to the 

decisions. 

 

3.3. K – Nearest Neighbours 

K nearest neighbours is one of the most essential supervised classification algorithms in 

machine learning. It is also one of the most basic ones, given that it doesn’t make any 

assumptions about the distribution of the data (non-parametric algorithm). It finds application 

in pattern recognition, intrusion detection and data mining [17], [18]. 

As a supervised method, the training set is first distributed according to the labels in a 𝑛 

dimensional space (as the vector of the input features enforces), like we can see the two labels 

(“Green”/“Red”) in Figure 3: 

 

Figure 3: knn distribution of the training set according to its labels (source [17]) 

After that, during the testing, unclassified data is placed in the graph according to their 

attributes, and the model must try to classify it properly (Figure 4). This is where the parameter 

𝑘 plays an important role, as this algorithm determines the class of each test datapoint as the 

same class that the majority of its 𝑘- nearest neighbours are, through a voting mechanism. If 

we set 𝑘 = 1, then the unclassified datapoint will be grouped together with its closest 

classified point. In general, when we choose fewer neighbours, it is better to choose an odd 

number of them, so that there is no conflict to resolve. 



21 
 

 

Figure 4: knn during testing 

K- nearest neighbours is a good algorithm to use when the data is multinomial (multiple 

classes), or non-linear (for regression problems), since it doesn’t have underlying assumptions 

on the training data distribution; it is also easy to understand and implement. However, the 

computational cost and memory requirements are relatively high, as it must store all the 

training data to work, and if the value of 𝑘 is high, then the voting process takes much longer 

to predict the outcome.  

 

3.4. Gaussian Naïve Bayes 

Naïve Bayes is a probabilistic classification algorithm based on the Bayes theorem. Gaussian 

NB is an extension of it, which assumes Gaussian (normal) distribution of the data. The naivety 

of the model comes from the assumption that all the features of the dataset are independent 

from each other, meaning that variation in one variable of the dataset do not impact the other 

features. The Bayes theorem is a conditional probability theorem that defines a classifier so 

that the error rate (misclassification) is minimized through the training phase, that works in a 

way to go from 𝑃(𝑋|𝑌) to find 𝑃(𝑌|𝑋) [19][20]. 

In the Bayes rule, from the training data we have: 

𝑃(𝑋|𝑌) =
𝑃(𝑋 ∩ 𝑌)

𝑃(𝑌)
 

Equation 3: probability that X belongs to class Y 

And from this, which is learnt during training, the model needs to learn the opposite (if 𝑌 is the 

correct class), during the testing phase: 

𝑃(𝑌|𝑋) =
𝑃(𝑋 ∩ 𝑌)

𝑃(𝑋)
 

Equation 4: probability that class Y is the correct outcome of occurrence X 
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There can be many mathematical expressions for the probability, but one of the most reliable 

ones, which is commonly used with Naïve Bayes, is the Gaussian distribution (aka normal 

distribution), which assumes that 𝑋 is a continuous variable: 

𝑃(𝑋|𝑌 = 𝑐) =
1

√𝜋𝜎𝑐
2

𝑒
−(𝑥−𝜇𝑐)2

2𝜎𝑐
2

  

Equation 5: probability of X being class Y when X follows Gaussian distribution 

In this Equation 5, 𝜎 is the variance, 𝜇 is the mean value of the data, and 𝑋 is calculated for a 

given class 𝑐 of 𝑌. 

The Gaussian Naïve Bayes is a simple, fast, and very effective algorithm, that can even 

outperform high complexity models. It can predict multiclass datasets, especially of categorical 

labels, and can perform well with less training data than other algorithms, as long as the 

condition for independence of the variables holds. On the other hand, the probabilistic nature 

of the algorithm comes with many conditions. If the input variables are not independent (which 

is rarely the case in real life) then the model underperforms significantly, as we will see in our 

own results too. Another big problem is that if a class that is present in the test set has not 

appeared in the training set, then the model assigns that class zero possibility. 

  

3.5. Multi-Layer Perceptron 

The multilayer perceptron (MLP) is a fully connected Artificial Neural Network (ANN). it feeds 

the input form the input layer to the hidden layer by taking the dot product of the input values 

with the weight parameters that exist at the interconnection of all nodes of the ANN. When all 

the input nodes are weighted, they add up at the entrance of the next layer’s node, where 

their resultant value passes an activation function (e.g., sigmoid, ReLU, tanh). 

 

Figure 5: the multilayer perceptron, a fully connected feedforward ANN 



23 
 

The value that comes out of the activation function is now the value of the hidden layer’s node 

and it can be fed to the next layer (another hidden layer or the output layer) with the same 

process of dot product calculation and activation function; this process is repeated in all the 

nodes of all the hidden layers [21], [22]. 

After getting to the output layer, the outcome value of the ANN is either used for 

backpropagation during the training phase, or the is presented as the result of the prediction 

during the test. 

Multilayer perceptrons are the basis of all ANNs, and have greatly improved machine learning 

algorithms, both in regression and in classification applications. Their flexibility and the 

abundance of both activation and optimisation functions have enabled computers to not be 

constricted by XOR calculations and enrich their learning potential for more rich and complex 

problems. 

MLPs can be shallow, when there is only one hidden layer, or Deep Neural Networks (DNNs), 

when there are two or more hidden layers. ANNs, especially DNNs are at the forefront of 

research in the past few years, as they are fundamental for deep learning and AI. One of their 

core strengths is that they solve problems stochastically, therefore allow approximate 

solutions to very complex or even unsolvable problems. The stochastic way of work allows the 

model not to make any assumptions about underlying probabilistic density or other relations 

between the variables of the input data, but rather get to it through the weight functions 

(interconnections of the nodes) and the repetitive process of training. MLPs can have high 

performance scores even with less training data, if given a sufficient number of nodes and 

layers, and a two-layer backpropagation neural network with enough hidden neurons has been 

proved to be a universal approximator [23]. The most important disadvantage of MLP 

compared with other DNN methods is that it is fully connected and creates a dense network, 

so the number of parameters needed for the model becomes very high. This leads to 

inefficiency and redundancy in more complex problems [24]. 

 

These are the five models that were used for this project. This brief explanation of the way 

they work is hopefully helpful for understanding why each of them showcased the results it did 

during the experimental phase. Each model has its own use and advantages in different cases, 

so it was considered useful to provide this comparison among them, with the NSL-KDD, which 

provides for a rich dataset when it comes to the number and variety of features, variation in 

the correlation between them, and many classifications to study. 
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4. Characteristics and pre-processing of the NSL-KDD dataset 

The NSL-KDD dataset is devised of many subsets of data. Specifically, the main sub-datasets 

are the KDDTrain+ and the KDDTest+, which have 125,973 and 22,544 rows respectively, 

giving it a 17.9% rate of test to training data. These two contain the full training and test 

datasets in .csv format, including attack type labels for each record and a difficulty level 

(ranging from 1 to 21). Apart from the two, the set contains a subset of the test including only 

the records with difficulty level lower than 21/21 named KDDTest-21, and another subset of 

25,192 records, randomly taken from the training dataset, the KDDTrain+_20Percent. The 

records of KDDTest-21 and KDDTrain+_20Percent are all included in the bigger datasets, 

KDDTest+ and KDDTrain+ respectively, so all the information of the dataset is present in the 

main files. 

The datasets are comprised of records of network traffic, as seen by a simple IDS network. Each 

record (row) has 43 features (columns), out of which the first 41 (#0 −  #40) are 

characteristics of the traffic, #41 is the attack label, and #42 is the difficulty level of the input.  

  

4.1. The attack labels (traffic type) 

In total, there are 39 attacks (40 different labels including the normal traffic) that belong in 

four classes: Denial of Service (DoS), Remote to Local (R2L), User to Root (U2R) and Probe 

attacks. The four classes of the NSL-KDD dataset are different in their objectives, the way they 

infect the network, and how they are distributed in the dataset. Also, a fifth category of the 

dataset is the normal traffic, which, naturally, is encountered more than all the attack traffic. 

Denial of Service (DoS): DoS attacks flood the network with abnormal traffic, so that the normal 

traffic can’t reach it. As a result, the network will most likely shut down, in order to be 

protected from the volume of data trying to pass through the IDS. 

Remote to Local (R2L): as the name suggests, R2L is an attack that tries to get local access to a 

system or network from a remote machine that can’t normally do that, so the attacker tries to 

“hack” their way into the network.  

User to Root (U2R): this is an attack where a normal user account tries to gain privileged access 

as a super-user (root access), by exploiting vulnerabilities and gaps in the devices of the system 

or network. 

Probe: probe or surveillance attacks try to steal information from a network. That can be client 

information, banking data, passwords or other personal data that are passing through the 

network. 
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In the NSL-KDD, these four classes (as well as normal traffic) are not equally distributed in the 

dataset. We can see from the initial analysis that the most common class of attacks is the DoS, 

both in the training (Figure 66) and test set (Figure 87): 

 

Figure 6: distribution of traffic by class of attack in training dataset 

 

Figure 7: distribution of traffic by class of attack in test dataset 



26 
 

Seeing it in absolute numbers (Table 1) there are a few differences between the training and 

the test set.  

Table 1: distribution of traffic in training and test datasets 

Type of traff

ic 

# in 

training set 

% in training 

set 

# in test 

set 

% in test 

set 

normal 67343 53.46% 9711 43.08% 

DoS 45927 36.46% 7460 33.09% 

Probe 11656 9.25% 2885 12.79% 

R2L 995 0.79% 2421 10.74% 

U2R 52 0.04% 67 0.30% 

 

In total, we see a skewed distribution towards the normal and DoS traffic in both datasets. In 

the test set however, the normal traffic is not even half of the total and the R2L class of attacks 

is accordingly boosted, compared with the training set. This uneven distribution of internet 

traffic is a realistic representation of typical internet traffic, where DoS attacks are the most 

common, followed by probe attacks, while R2L and U2R are hardly encountered in real life. 

For a more detailed approach, all the different attacks need to be addressed. It is notable that 

DoS attacks are the most common in terms of encounters in both the datasets, but when it 

comes to the number of different attacks each class includes, R2L is the one that comes first. 

In the following Table 2, we can see all the labels that are included in the NSL-KDD, divided in 

their classes: 

Table 2: all attack labels of the NSL-KDD, by class 

Class  R2L DoS U2R Probe 

Attacks 

ftp_write 

guess_passwd 

httptunnel 

imap 

multihop 

named 

phf 

sendmail 

snmpgetattack 

spy 

snmpguess 

warezmaster 

warezclient 

xlock 

xsnoop 

apache2 

back 

land 

neptune 

mailbomb 

pod 

processtable 

smurf 

teardrop 

udpstorm 

worm 

buffer_overflow 

loadmodule 

perl 

ps 

rootkit 

sqlattack 

xterm 

ipsweep 

mscan 

nmap 

portsweep 

saint 

satan 

Total 15 11 7 6 

The dataset was also studied to classify all the attacks separately, so it was worthwhile to 

investigate how many encounters of each attack are found. This can be seen in the next couple 

of figures (Figure 88, Figure 99), in the training and test set respectively. In the case of studying 

the various attacks separately, the normal traffic outnumbers the rest by far, followed by 

Neptune, the most popular DoS attack. It is also notable that in the training set, only 23 labels 
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(22 attacks and 1 for normal traffic) are encountered, whereas in the test set, there are 38 

different labels, to make sure that the IDS can identify attacks that were not previously seen 

during training, when it first encounters it during the validation of the model. 

 

Figure 8: traffic distribution in training set 

 

Figure 9: traffic distribution in test set 
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Figure 1010 and Figure 1111 showcase the rate between normal and “abnormal” traffic, since 

the dataset was also studied as a binary classification problem. It is noticeable that in the test 

set, there is more abnormal traffic than there is normal. 

 

Figure 10: traffic ratio in training set 

 

Figure 11: traffic ratio in test set 
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4.2. The features of NSL-KDD 

Other than the label feature of the dataset, which is found in the 42𝑛𝑑 column (#41), and the 

last column that is the severity/difficulty level (#42, which is removed during the pre-

processing phase), the rest of the features represent the information that the IDS uses to 

determine the type of traffic and assign the appropriate label to it. These features can be 

categorised by the information they contain, and the way it is extracted from the packets 

arriving at the network. 

There are four categories by which the features are grouped [25]: 

Intrinsic features (columns #0 −  #8), that contain information from the header without 

needing to dive into the payload, which hold the basic information about the incoming packet.  

Content features (columns #9 −  #21), that hold information about the incoming packets in a 

connection-based way that allow the IDS access to the payload. 

Time-based features (columns #22 −  #30) have the traffic analysed over a 2 second window, 

and mostly contain rates and counts (e.g., of connection attempts, port number, connections 

that activate certain flags, etc.) rather than information from the packets themselves. 

Lastly, host-based features (columns #31 −  #40) are similar to the last category, but instead 

of analysing inside the 2-second window, they gather information over a series of connections 

made (e.g., percentage of connections with the same destination host address/port number), 

in order to access attacks that span longer than the window allowed previously. 

A table of all the 41 features, with a brief explanation of each, can be found in Annex A: table 

of the NSL-KDD features. 

The NSL-KDD dataset has different kinds of data in its features, which makes it necessary to 

pre-process the data, to be able to find correlation and investigate it, or feed the data into a 

model. More specifically, there are four types of data in the dataset: categorical (columns 

#1, #2, #3, #41), binary (columns #6, #11, #13, #19 −  #21), discrete (columns #7, #8, #14, 

 #22 −  #40, #42) and continuous (columns #0, #4, #5, #9, #10, #12, #15 −  #18). Binary, 

discrete, and continuous values, being numerical, are okay to be left as they are, but the 

categorical values, being in strings forms, are not suitable for further analysis and finding 

relationships among the data. 

 

4.2.1. Categorical features 

The categorical variables found in the dataset, apart from the attack label column (#41) that 

has already been investigated, have to do with three features of the connection: protocol (col. 

#1), service (col. #2) and flags (col. #3). In this section, each of these features in the dataset is 

going to be briefly analysed, to get an idea of what the network traffic looks like, what is more 
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common and how the following correlations (during the pre-processing phase) can be 

explained. 

A list of all the services can be found in the NSL-KDD can be found in Annex B: table of all the 

services in the NSL-KDD dataset. In this section, a brief presentation of the protocols and 

services is given, to present a picture of the characteristics of the dataset. 

The protocols recorded in the dataset all belong to the transport layer of the OSI model and of 

the TCP/IP stack [26], and the network layer (in OSI) or internet layer (in TCP/IP). The transport 

layer, which is the most represented in the dataset, is responsible for process-to-process 

delivery (by port number addressing), end-to-end connection between hosts, connecting 

devices without considering the network fabric, multiplexing and demultiplexing, so that 

different applications are simultaneously used over the network, congestion and flow control, 

and data integrity/error correction. 

In the NSL-KDD, three protocols are found: 

TCP (Transmission Control Protocol): TCP is the most popular protocol of the transport layer 

because it provides reliable transmission of all packages. It does so, by having an 

acknowledgment signal for all received packets, and it resends the lost ones. While this is a 

great advantage that provides a reliable and safe communication, it adds an additional 

overhead due to these features. It is commonly used by protocols such as HTTP and FTP. 

UDP (User Datagram Protocol): UDP, unlike TCP, doesn’t provide acknowledgement of the 

received packets, thus the connection is not reliable, it relies on a “best effort” approach. 

However, it is very simple and comes with much less overhead compared to other protocols. 

it is most commonly used in streaming/real time services, such as video or voice streaming. 

ICMP (Internet Control Message Protocol): ICMP is a network/internet layer protocol, despite 

sometimes being perceived as a transfer layer one, as the internet layer depends on ICMP for 

error and control messages (ping, traceroute, destination unreachable, etc.). It is mainly used 

to determine whether or not data has reached its intended destination in a timely manner. In 

the case of the NSL-KDD dataset, and TCP data dumps in general, ICMP is usually seen when 

the packets are fragmented.  

In the NSL-KDD dataset we can find most of the traffic using the TCP protocol, a smaller 

percentage using UDP, and a small number of records being ICMP messages, with both the 

training and the test sets behaving similarly (Table 3, Figure 1212 and Figure 1313): 

Table 3: protocols in the NSL-KDD subsets 

Protocol 
# in training 

set 

% in training 

set 

# in test 

set 

% in test 

set 

TCP 102689 81,52% 18880 83,75% 

UDP 14993 11,90% 2621 11,62% 

ICMP 8291 6,58% 1043 4,63% 
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Figure 12: protocols distribution in training set 

 

Figure 13: protocols distribution in test set 

The services (column #2) are all about the application layer (top level in both the OSI and 

TCP/IP models). In the dataset, there are protocols that enable capabilities such as email 

exchange, website navigation, data storage and manipulation, DNS, etc. and work in a server-

client or a peer-to-peer philosophy. 

Since the NSL-KDD is labelled with 70 different services, a list of them and their encounters in 

the datasets is going to be given in Annex B. Below, are the diagrams produced from counting 

all the featured services, to get an idea of what applications are the most common in the 

network. We can see that, in both the training (Figure 1414) and test set (Figure 1515), http 

(communication between web clients and servers) and private network (e.g. VPN) traffic 

accounts for about half of the total traffic, followed by domain requests and telnet respectively. 
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Figure 14: services distribution in training set 

 

Figure 15: services distribution in test set 
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Flags are an important feature of the connection, as they describe whether the connection was 

established, terminated, or rejected normally. In the NSL-KDD dataset, there are 11 different 

flags that are found in both the training and the test sets. It is shown in the figures below 

(Figure 166, Figure 177) that the two subsets have different distributions of the flags: 

 

Figure 16: flags distribution in training set 

 

Figure 17: flags distribution in test set 
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The difference between the ratio of REJ and S0 flags, which are the most prominent after the 

SF flag, can be understood after looking at what each label means, in Table 4: 

Table 4: flags in the NSL-KDD dataset 

Name  Meaning 

SF Normal establishment and termination 

S0 Connection attempt, no reply 

REJ Connection attempt rejected 

RSTR Connection reset by the destination 

RSTO Connection reset by the source 

S1 Connection establishment, no termination 

SH Source sent a SYN and FIN, without a SYN-ACK from the destination  

S2 Connection established, close attempt from source but no reply 

RSTOS0 Source sent a SYN and RST, without a SYN-ACK from the destination 

S3 Connection established, close attempt by destination but no reply 

OTH No SYN, just midstream traffic that is not later closed 

In the test set, where the abnormal traffic is higher, it is natural to have more rejection flags, 

whereas in the training set, where the normal traffic prevails, more connection attempts are 

to be expected. 

 
 

4.3. Pre-processing of the NSL-KDD dataset 

One of the most important steps in creating a data science model is pre-processing the data. 

Python is a language especially capable of handling tasks that have to do with data handling 

and processing, and in this section, the preparation of the dataset is going to be described step 

by step. Essentially, the dataset was imported to a Jupyter notebook as a dataframe, the 

categorical variables were encoded as numerical ones, and the data was scaled so that it didn’t 

bias the importance of each feature. 

Firstly, the NSL-KDD dataset, as a set of .csv files (KDDTrain+ and KDDTest+), was loaded into 

the notebook by using the pandas library. Pandas is a crucial library for most of the operations 

done on the data, from reading/writing, to handling the dataset column by column and 

encoding it. 

Using pandas, the dataset was loaded into two dataframe type variables, one for the training 

and one for the testing subset. Their lengths are 125,973 and 22,544 records respectively, 

and they both have 43 columns (0 − 42).  

Other than the two multiclass datasets (Figure 18), two more pairs of training – test dataframes 

were created, one for binary classification (Figure 19), where #42 labels were turned into 

‘normal’ and ‘abnormal’, and one for the 4-class classification (Figure 20), where #42 labels 

were turned into ‘normal’, ‘DoS’, ‘Probe’, ‘R2L’ and ‘U2R’ labels. 
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Below, are snapshots of the heads (first five rows) of all the dataframes, as they are displayed 

in the Jupyter notebook: 

  

Figure 18: Multiclass training and test dataframes (heads) 

  

Figure 19: Binary training and test dataframes (heads) 

  

Figure 20: 4-class training and test dataframes (heads) 

The difference between each pair of dataframes can be seen in column #41, where the traffic 

type label has a different set of values. 

The next step in the process is to clean any data with the wrong format, drop records with 

missing values or redundant records. As was explained in a previous section, one of the things 

that were upgraded from the KDD dataset is that all redundant data were deleted, so the 

dataset has only unique records of traffic. After checking that there are no missing features, 

no missing values, and no wrong formatted values in the dataset, some adjustments were 

made to the dataframes. Firstly, the last column of the dataset, which is the difficulty level of 

the records, was dropped, and saved separately into two lists, one for the training and one for 

the test difficulty levels. The distributions of each difficulty list can be found in Figure 21 and 

Figure 22, where we can see that most records have the highest score (21/21): 
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Figure 21: difficulty distribution in training set 

 

Figure 22: difficulty distribution in test set 

Specifically, in the training set there are 62,557 records (out of 125,973), or 49.66%, and in 

the test set 10,694 (out of 22,544 records), which amount to 47.44%. Difficulty level 18/21 

follows in both subsets, with a presence of 20,667 (16.41%) and 2,967 (13.16%) respectively. 
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After separating column #42, one more was deleted from all the dataframes, column #19 

(number of outbound commands in an ftp session). This column, which was all zeros, became 

𝑁𝑎𝑁 during the correlation calculations, and also, it didn’t seem to offer any information to 

the dataset. 

 

4.3.1. One-hot encoding 

After cleaning the data, the categorical variables need to be changed into numerical, in order 

to be counted in the process of correlation calculations and then to be fed into the model. As 

described before, there are four features in the dataset that represent classification: protocols, 

services, flags, and attack types (see 4.2.1. Categorical features). While the first three are 

common in all the dataframes created, the attack type makes it necessary to create different 

encoded representations for each dataframe. 

The way that the categorical features were encoded into numerical variables is through one-

hot encoding [27]. With one-hot encoding, specifically by creating dummy variables out of the 

categorical ones, one label is turned into a vector of 𝑁-dimensions, where 𝑁 is the number of 

all the different values this categorical variable might have. 

For example, in column #1 are the protocols used for each record. In the dataset, there are 

three protocol categories: {𝑇𝐶𝑃, 𝑈𝐷𝑃, 𝐼𝐶𝑀𝑃}, and each record can have only one of these 

values. The protocols, like all other categorical features in this dataset, do not have a 

hierarchical relationship with each other, which means that they can’t be replaced by integer 

values, like: {0, 1, 2}, as they would indicate an order to the different categories. With one-hot 

encoding of the protocols, the categorical variables are turned into 3-dimensional vectors: 

{[1, 0, 0], [0, 1, 0], [0, 0, 1]}. 𝑇𝐶𝑃 is represented by [1, 0, 0], similarly 𝑈𝐷𝑃 with [0, 1, 0] and 

𝐼𝐶𝑀𝑃 with [0, 0, 1]. As the name on-hot encoding suggest, each record must have all 

dimensions zero, except for the one that represents its category. 

With the .get_dummies method, the categorical features are all moved to the end of the 

dataframe, and the one-hot encoded vectors are expanded as different columns. This is shown 

in Table 5, where columns 0 and 4 − 40 are ordered the same as before, while columns 1 

(protocols), 2 (services), and 3 (flags) have moved to the tail of the dataframe, and the 

previously one-column-each feature has expanded to 3, 70 and 11 columns respectively (in 

the training set). 

In the case of column 41 (type of traffic), it has expanded to different numbers of labels, 

according to the classification. There are 23 traffic labels for the multiclass training set (in the 

respective test set, there are 38 different labels), 2 labels for the binary classification and 5 

labels for the four-class classification training and test sets. 

One-hot encoding has a minor flow, which can cause a problem if not considered. As it was 

mentioned, the number of traffic labels differs between the training set and the test set, 

resulting in a different number of columns after the encoding. The same thing happens in the 
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case of the services feature (col. #2), where, in the training set we can find 70 different 

services, and in the test set we find 64. This problem was later addressed, at the later steps of 

the pre-processing, as the subsets were prepared to be fed into the models. 

Table 5: labels of the dataframes before and after one-hot encoding 

Labels 
of 

columns 
before  

Labels of columns in multiclass training 
dataframe, after one-hot encoding 

Labels of columns in binary 
classification training dataframe, 

after one-hot encoding 

Labels of columns in 4-class 
classification training dataframe, 

after one-hot encoding 

[0, 1, 
 2, 3, 
 4, 5, 
 6, 7,  
8, 9,  

10, 11, 
12, 13, 
14, 15, 
16, 17, 
18, 20, 
21, 22, 
23, 24, 
25, 26, 
27, 28, 
29, 30, 
31, 32, 
33, 34, 
35, 36, 
37, 38, 
39, 40, 

41] 

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 
'1_icmp', '1_tcp', '1_udp', '2_IRC', '2_X11', 

'2_Z39_50', '2_aol', '2_auth', '2_bgp', 
'2_courier', '2_csnet_ns', '2_ctf', 

'2_daytime', '2_discard', '2_domain', 
'2_domain_u', '2_echo', '2_eco_i', '2_ecr_i', 

'2_efs', '2_exec', '2_finger', '2_ftp', 
'2_ftp_data', '2_gopher', '2_harvest', 

'2_hostnames', '2_http', '2_http_2784', 
'2_http_443', '2_http_8001', '2_imap4', 

'2_iso_tsap', '2_klogin', '2_kshell', '2_ldap', 
'2_link', '2_login', '2_mtp', '2_name', 

'2_netbios_dgm', '2_netbios_ns', 
'2_netbios_ssn', '2_netstat', '2_nnsp', 

'2_nntp', '2_ntp_u', '2_other', 
'2_pm_dump', '2_pop_2', '2_pop_3', 

'2_printer', '2_private', '2_red_i', 
'2_remote_job', '2_rje', '2_shell', '2_smtp', 
'2_sql_net', '2_ssh', '2_sunrpc', '2_supdup', 
'2_systat', '2_telnet', '2_tftp_u', '2_tim_i', 

'2_time', '2_urh_i', '2_urp_i', '2_uucp', 
'2_uucp_path', '2_vmnet', '2_whois', 

'3_OTH', '3_REJ', '3_RSTO', '3_RSTOS0', 
'3_RSTR', '3_S0', '3_S1', '3_S2', '3_S3', '3_SF', 

'3_SH', '41_back', '41_buffer_overflow', 
'41_ftp_write', '41_guess_passwd', 
'41_imap', '41_ipsweep', '41_land', 

'41_loadmodule', '41_multihop', 
'41_neptune', '41_nmap', '41_normal', 

'41_perl', '41_phf', '41_pod', 
'41_portsweep', '41_rootkit', '41_satan', 

'41_smurf', '41_spy', '41_teardrop', 
'41_warezclient', '41_warezmaster'] 

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 20, 21, 22, 23, 24, 
25, 26, 27, 28, 29, 30, 31, 32, 33, 

34, 35, 36, 37, 38, 39, 40, '1_icmp', 
'1_tcp', '1_udp', '2_IRC', '2_X11', 

'2_Z39_50', '2_aol', '2_auth', 
'2_bgp', '2_courier', '2_csnet_ns', 
'2_ctf', '2_daytime', '2_discard', 

'2_domain', '2_domain_u', 
'2_echo', '2_eco_i', '2_ecr_i', 

'2_efs', '2_exec', '2_finger', '2_ftp', 
'2_ftp_data', '2_gopher', 

'2_harvest', '2_hostnames', 
'2_http', '2_http_2784', 

'2_http_443', '2_http_8001', 
'2_imap4', '2_iso_tsap', '2_klogin', 

'2_kshell', '2_ldap', '2_link', 
'2_login', '2_mtp', '2_name', 

'2_netbios_dgm', '2_netbios_ns', 
'2_netbios_ssn', '2_netstat', 

'2_nnsp', '2_nntp', '2_ntp_u', 
'2_other', '2_pm_dump', '2_pop_2', 
'2_pop_3', '2_printer', '2_private', 
'2_red_i', '2_remote_job', '2_rje', 

'2_shell', '2_smtp', '2_sql_net', 
'2_ssh', '2_sunrpc', '2_supdup', 
'2_systat', '2_telnet', '2_tftp_u', 

'2_tim_i', '2_time', '2_urh_i', 
'2_urp_i', '2_uucp', '2_uucp_path', 

'2_vmnet', '2_whois', '3_OTH', 
'3_REJ', '3_RSTO', '3_RSTOS0', 
'3_RSTR', '3_S0', '3_S1', '3_S2', 

'3_S3', '3_SF', '3_SH', 
'41_abnormal', '41_normal'] 

[0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
36, 37, 38, 39, 40, '1_icmp', '1_tcp', 

'1_udp', '2_IRC', '2_X11', '2_Z39_50', 
'2_aol', '2_auth', '2_bgp', '2_courier', 

'2_csnet_ns', '2_ctf', '2_daytime', 
'2_discard', '2_domain', 

'2_domain_u', '2_echo', '2_eco_i', 
'2_ecr_i', '2_efs', '2_exec', '2_finger', 

'2_ftp', '2_ftp_data', '2_gopher', 
'2_harvest', '2_hostnames', '2_http', 

'2_http_2784', '2_http_443', 
'2_http_8001', '2_imap4', 

'2_iso_tsap', '2_klogin', '2_kshell', 
'2_ldap', '2_link', '2_login', '2_mtp', 

'2_name', '2_netbios_dgm', 
'2_netbios_ns', '2_netbios_ssn', 
'2_netstat', '2_nnsp', '2_nntp', 

'2_ntp_u', '2_other', '2_pm_dump', 
'2_pop_2', '2_pop_3', '2_printer', 

'2_private', '2_red_i', 
'2_remote_job', '2_rje', '2_shell', 

'2_smtp', '2_sql_net', '2_ssh', 
'2_sunrpc', '2_supdup', '2_systat', 

'2_telnet', '2_tftp_u', '2_tim_i', 
'2_time', '2_urh_i', '2_urp_i', 

'2_uucp', '2_uucp_path', '2_vmnet', 
'2_whois', '3_OTH', '3_REJ', '3_RSTO', 
'3_RSTOS0', '3_RSTR', '3_S0', '3_S1', 

'3_S2', '3_S3', '3_SF', '3_SH', 
'41_DoS', '41_Probe', '41_R2L', 

'41_U2R', '41_normal'] 

In total: 
42 

In total: 144 In total: 123 In total: 126 

 

4.3.2. Correlation 

The encoded dataframe is now ready to have its correlation measured, since all the variables 

are going to be taken into account. The pandas .corr function [28] is used to find the pair wise 

correlation of all the columns in the dataset, thus the relationship between the features is 

explored. If the categorical variables were not changed to numerical, they wouldn’t have been 

considered during the calculations, so even the most interesting label, that of the type of 

traffic, which is the goal of the model, wouldn’t be correlated with the features of the dataset. 

Correlation was calculated for all the dataframes, so there are six figures in total, for multiclass 

(Figure 23, Figure 24), binary (Figure 25, Figure 26) and 4-class (Figure 27, Figure 28) 

classification. 
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Figure 23: correlation in multiclass training set 

 

Figure 24: correlation in multiclass test set 
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Figure 25: correlation in binary training set 

 

Figure 26: correlation in binary test set 
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Figure 27: correlation in 4-class training set 

 

Figure 28: correlation in 4-class test set 
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The correlation ranges from −1 to +1. When it trends towards +1, it shows that the two 

columns have a proportional relationship (when 𝐴 ↑ then 𝐵 ↑). On the other hand, when 

correlation is closer to −1, then the two columns have an inversed proportional relationship 

to each other (when 𝐴 ↑ then 𝐵 ↓). When two features have no relationship to each other, so 

the way one changes doesn’t influence the other, correlation is 0. For the visualisation of 

following graphs, a palette was chosen that highlights correlation the closer it is to +1 and −1, 

while correlations close to 0 are dark. 

The correlation calculations are done pairwise, which means that the product of this metric is 

a matrix with dimensions # 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 × # 𝑐𝑜𝑙𝑢𝑚𝑛𝑠. This is why the diagonal highlighted in all 

the graphs has correlation equal to 1, it calculates correlation between the column and itself. 

Because of the difference in the resulting columns due to one-hot encoding, the correlation 

matrices also have different sizes from each other, as is shown in Table 6 below: 

Table 6: correlation matrices dimensions 

Multiclass training set 144 × 144 
Multiclass test set 153 × 153 

Binary class training set 123 × 123 
Binary test set 117 × 117 

4-class training set 126 × 126 
4-class test set 120 × 120 

Using the seaborn python library, the matrices were visualised as heatmaps, where high 

correlation (towards +1 and −1) has lighter hues the more it tends to ±1, and darker the 

more it nears 0. 

It is clear and expected (since all the features apart from the traffic type are the same) that all 

the dataframes behave the same way, with higher intercorrelation among the time-based and 

host-based features (columns #21 − #40). Those are the features that also seem to be 

influenced by the categorical features the most, as we can see in the bottom left of the 

heatmaps. Another interesting thing we can see from the correlation heatmaps is that in the 

multiclass set (Figure 23, Figure 24) in the last columns, where the encoded traffic types are, 

the correlation is lower than in both the binary and the 4-class classifications; this is expected, 

when the types of classifications are compared. What is interesting in the multiclass case, is 

that the attacks show no correlation to each other, be it attacks of the same category or other 

classes. In fact, the correlation between different classes of attacks in the 4-class classification 

(Figure 277, Figure 288) seems to be higher than that of the multiclass separated attacks that 

belong in the same class. 

Thanks to the correlation between the features, especially the correlation between the traffic 

type and the other features of each record, we can understand what makes the model classify 

something as a DoS or a U2R attack, or as normal traffic. 
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4.3.3. X and Y components, scaling the data 

With the correlation of the NSL-KDD calculated, we saw the connection between the target 

labels and the features of the dataset in each classification scenario, which features mostly 

affect the prediction of the model. Now, the next step is to split the dataframes’ features 

(columns 0 − 40) from the target labels (column 41), into X and Y components, so that they 

can be used as input and output respectively for the models we use. 

New instances of the dataframes are created by copying the first 40 columns of the original 

training and test dataframes into x-train/x-test dataframe type variables, and the last column 

(#41) into y-train/y-test variables (columns #19 and #42 are deleted). This is repeated for all 

the different classification cases, even though the X component is essentially the same in all of 

them. These variables are created from the dataframes as they were before one-hot encoding, 

as it is easier to load them without minding the amount of encoded extra columns that are 

created after it; thus, it is necessary to do the encoding again, but only on the X component 

(columns 1, 2 and 3), leaving the Y dataframe of traffic type labels a categorical list of one 

column. 

Next is the alignment of the training and test arrays, because the one-hot encoded training set 

is a 125973 × 121 (records × columns) array, while the test is 22544 × 115. As they are, the 

two arrays cannot be used by the same model; they must be uniform, as the structure of the 

model recognises a specific form of input. 

As was mentioned above, due to the one-hot encoding algorithm used, the categorical columns 

move at the end of the features space and are expanded to all their unique labels as 1𝑠 and 

0𝑠. It is important to consider how the alignment occurs in a way that doesn’t disturb the 

classes of each previously categorical variable. With the pandas method .align() it was possible 

to add the extra columns at the right place (with the ‘outer’ join option) and add the value 0 to 

them (with the fill value option), so that the extra categories not found in one of the dataframes 

was added in between the rest of the particular categorical feature and conformed to the one-

hot way of encoding the variables. As a result, all the datasets were 125973 × 121 or 

22544 × 121, and there was no 𝑁𝑎𝑁 value in any of them. 

After the alignment of the training and test datasets, the dataframes were scaled, using the 

Standard Scaler from the sklearn.preprocessing library [29]. Scaling the numerical data is an 

important step in pre-processing, as their different ranges and dimensions result in bias when 

the weights of the model are calculated. The range of the different features, seen in Annex A 

(Table 9) is 0 − 1,379,963,888 in the case of column 4, but only 0/1 in all the binary variables, 

or even hundredth decimals in the float variables that represent rates. No matter how few the 

datapoints with values this far apart are, the model needs to be trained and validated on similar 

sizes of data, so that the relationships between each record and each feature can be better 

recognised. 
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Standard scaler follows the standard normal distribution to calculate the value of each 

datapoint, which means that it takes mean = 0 and scales the data so that the total variance, 

meaning the new range of the data, is = 1 (unit variance). The scaling is calculated as: 

𝑥′ =
𝑥 − 𝜇

𝑠
 

Equation 6: standard scaling equation 

Where 𝑥′ is the new scaled data, 𝑥 is the data to be scaled, 𝜇 is the mean of the training samples 

and 𝑠 is the standard deviation. 

Standard scaling occurs in two steps for the training data, the fitting phase, and the 

transformation phase. The fit(data) function is used to compute the mean and standard 

deviation of each (numeric) feature, while transform(data) is used after the fitting to perform 

the scaling of the data, using the variables calculated with the fit function. This way, the scaler 

is trained (calculates 𝜇, 𝑠) on the training set, and then, with those parameters set, the 

transformation is also applied on the test data. Thus, it is important to apply fit and transform 

on the training data, but only transform on the test data, so that the model is not biased with 

information from the test data. While theoretically, the training and test set might have mean 

and deviation values that are very close, we shouldn’t let the model be influenced by the test 

set distribution and features when it is training. Also, the test data should be scaled according 

to the training set’s distribution parameters, so that its divergence from the original training 

data is prominent and the model truly tested on unknown records. 

After aligning and scaling the data, the dataset looks like this: 

[[−0.11024922  − 0.0076786   − 0.00491864 . . . −0.01972622  0.82515007  − 0.04643159] 
 [−0.11024922  − 0.00773737  − 0.00491864 . . . −0.01972622  0.82515007  − 0.04643159] 

 [−0.11024922  − 0.00776224  − 0.00491864 . . . −0.01972622  − 1.21190076  − 0.04643159] 
 . . . 

 [−0.11024922  − 0.00738219  − 0.00482315 . . . −0.01972622  0.82515007  − 0.04643159] 
 [−0.11024922  − 0.00776224  − 0.00491864 . . . −0.01972622  − 1.21190076  − 0.04643159] 
 [−0.11024922  − 0.00773652  − 0.00491864 . . . −0.01972622  0.82515007  − 0.04643159]] 

Figure 29: training dataset (multiclass) after standard scaling 

Now that the scaling of the data is finished, the training and test datasets are ready to be fed 

into models for the three different classification scenarios (multiclass, binary, and 4-classes 

classification), for the intrusion detection performance to be measured. 

To sum up, this section describes the whole pre-processing phase of this project. We saw how 

the data was loaded into dataframes and how the three kinds of classifications were created, 

by changing the traffic type labels in column #41 into ‘normal’ and ‘abnormal’ in the case of 

binary classification, or ‘normal’, ‘DoS’, ‘Probe’, ‘U2R’ and ‘R2L’ types of attacks in the 4 attack 

classes. Then, the distribution of the categorical features, that describe the type of traffic, was 

analysed, and the categorical variables of the dataframes were encoded into numerical values, 

via one-hot encoding. Correlation calculations showed that the features that mostly affect the 

type of traffic are the time- and host-based ones. After that, the datasets were split into X and 
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Y components, so that they are ready to be fed into the models, the X components were once 

again one-hot encoded into numerical variables, and the training and test sets were aligned to 

each other and scaled to unit variance using the standard scaler. 

In the next section, the classification models are going to be tested out and evaluated on their 

performance on the dataset. 
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5. Evaluation and results 

The training and test datasets, which were pre-processed earlier (section 4.3. Pre-processing 

of the NSL-KDD dataset) showed that they were very different from each other, especially 

when it came to the distribution of the traffic type labels (Table 1) and of the difficulty levels 

(Figure 21, Figure 2222). This divergence led to interesting results in the experimental phase of 

this project, where the models described above ( Classification models analysis) were put to 

the test. It was observed that the test dataset, on which predictions were made, showed far 

lower accuracy scores than the accuracy acquired during training. Naturally, overfitting was a 

problem that was first addressed, but still the models seemed to stabilise at the performance 

shown below, in Table 7. For a deeper view into the performance of the models and the effect 

of the differences between the KDDTrain+ and KDDTest+ datasets, two cases were created: in 

case A, the five models were applied to all the classification scenarios (multiclass, binary, 4-

class), using the KDDTrain+ as training dataset, and the KDDTest+ as test (validation) dataset, 

as they were prepared during the pre-processing phase (4.3. Pre-processing of the NSL-KDD 

dataset). In case B, the same models were used (mostly with the same parameters that 

optimized their performance) on all the classifications, but here only the KDDTrain+ was used 

as training and test set, by splitting it with the commonly used train_test_split [30] utility from 

the sklearn library, after being pre-processed like before. 

When the same algorithms were applied to case B, it showed that the models were working 

exceptionally, as is shown in Table 8. Due to the very homogenous distribution of the training 

and validation parts of the dataset, the performance both in training and testing phases is the 

same and gets very high results. 

Table 7: summary/comparison of classification algorithms performance in case A 

 

CLASSIFICATION ALGORITHM CLASS SCENARIO TRAINING SET TEST SET 
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LOGISTIC REGRESSION 
multi 0,99 0,70 

binary 0,97 0,75 

4-class 0,99 0,76 

DECISION TREE 

multi 1,00 0,71 

binary 1,00 0,79 

4-class 1,00 0,76 

K NEAREST NEIBOURS 

multi 0,99 0,72 

binary 0,99 0,77 

4-class 0,99 0,74 

GAUSSIAN NAÏVE BAYES 

multi 0,77 0,53 

binary 0,84 0,55 

4-class 0,65 0,42 

MULTI LAYER PERCEPTRON 

multi 1,00 0,72 

binary 1,00 0,79 

4-class 1,00 0,77 
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Table 8: summary/comparison of classification algorithms performance in case B 

 CLASSIFICATION ALGORITHM CLASS SCENARIO TRAINING SET TEST SET 
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LOGISTIC REGRESSION 

multi 0,99 0,99 

binary 0,97 0,97 

4-class 0,99 0,99 

DECISION TREE 

multi 1,00 1,00 

binary 1,00 1,00 

4-class 1,00 1,00 

K NEAREST NEIBOURS 

multi 0,99 0,99 

binary 0,99 0,99 

4-class 0,99 0,99 

GAUSSIAN NAÏVE BAYES 

multi 0,76 0,76 

binary 0,85 0,85 

4-class 0,65 0,65 

MULTI LAYER PERCEPTRON 

multi 1,00 1,00 

binary 1,00 1,00 

4-class 1,00 1,00 

Below (Figure 3030, Figure 31), we can see the accuracy scores of Table 7 and Table 8 in a diagram 

form, where it is easier to see the difference between the two cases (using KDDTrain+ and 

KDDTest+ versus splitting the KDDTrain+ dataset into training and test sets), but what is also 

noticeable is the similarity in the behaviour of all the models between training and test 

accuracy scores.  

 

Figure 30: accuracy scores of all models and classification scenarios for case A 
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Figure 31: accuracy scores of all models and classification scenarios for case B 

It is important to emphasize that these are the final scores that the models obtained, as they 

trended towards that value and stabalized there afterwards, with no more fine-tuning 

happening, and those are the values that are the closest between the training and test sets. 

 

5.1. Interpreting the Classification Reports 

The classification reports, found in Annex C: list of all the classification reports, contain all the 

information extracted from the model analysis, for the parameters that showed optimized 

results. The report displays four columns of information, “precision”, “recall”, “f1 score” and 

“support”. Since most of the models work in a one-against-all way (𝑦 = 1 -positive- if it is the 

class we are looking for, 𝑦 = 0 -negative- if it is any other class), there are four possible 

outcomes of the algorithm calculation: 

• True positive (TP): the entry was positive, and the model predicted positive. 

• False positive (FP): the entry was negative, and the model predicted positive. 

• False negative (FN): the entry was positive, and the model predicted negative. 

• True negative (TN): the entry was negative, and the model predicted negative. 

 These four percentages that make up the model’s performance for each label, will be used to 

create the three metrics of performance for the classification report [31][32][33]. 

Precision (Equation 7) is the measure of how accurate the model’s positive predictions are, how 

much it’s able to avoid wrongly labelling something as positive: 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 7: precision equation 

Recall (Equation 8) is the ability of the model to find all the positive values in the dataset for this 

instance: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 8: recall equation 

F1-score (Equation 9) is the harmonic mean of precision and recall, and is a measure of the 

model’s accuracy, for the classification of each instance: 

𝐹1 =
2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 + 𝑟𝑒𝑐𝑎𝑙𝑙−1
=

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 

Equation 9: F1-score - harmonic mean equation 

Lastly, Support is simply the times that each specific class is encountered in the dataset, the 

instances of each label. It is from those instances that the precision and recall are calculated 

for each label of the dataset, in a binary way (one-against-all). 

The average values of the report below the label-by-label metrics lead the results from binary 

to multiclass classification [34]. Most importantly, accuracy (Equation 11,Equation 11) measures 

the overall ability of the model to classify correctly over all of the values. If 𝑦𝑖̂ is the predicted 

value of sample 𝑖 and 𝑦𝑖 is the real value, then accuracy is defined as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦̂) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 1(𝑦𝑖̂ = 𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 

Equation 10: accuracy equation 

Or more intuitively: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

Equation 11: intuitive accuracy equation 

Macro average is simply the mean of all the above binary metrics, for precision, recall and f-1 

score respectively, taking all classes as of equal importance, which is often untrue, especially 

in unbalanced datasets such as NSL-KDD; weighted average is the mean value of the binary 

metrics, with each class’s score weighted by its presence in the dataset (the support value). 

The weighted average is much closer to the accuracy score, as we can see in the classification 
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reports of our models, because of the imbalance of our dataset, and shows a quick evaluation 

of the performance of each binary classification as a whole. 

 

 

5.2. Evaluation and results compared to relevant research 

In reality, case B is not very useful, because there is rarely any chance to encounter traffic data 

so close to the training data of the model, especially with the rapid rate that network 

exploitations evolve today; it was mostly done to test if there was an overfitting problem, as 

validation for the training phase of the models, and to apply the same practices that are usually 

done step-by-step in most machine learning projects, which usually split the original dataset 

into training and test subsets. 

The test set of the NSL-KDD, with its difference in the distribution of the labels , services, flags 

and many more features, reflects more of the real world, and the performance of all the 

models actually reaches almost the same levels as some of the latest research, even much 

more complex and innovative models, like [35], [36], [12] and [9]. 

In [35], the best results of all are found, with a record 89% accuracy reached in a LSTM model. 

Except that, they use a Deep CNN, combined with Denoising and Contractive AE in different 

balances, and reach 81 − 85%. Using more classical approaches similar to ours, (kNN, DT, 

MLP, RF) they reach 74 − 82% accuracy. [12] have the second best accuracy results, with their 

implementation being an AE, followed by another sparse AE network, and for the output layer 

they have put a LR classifier, that only provides binary classificaction. With these, they reach 

87.2% accuracy. In [36], the input goes through multiple CNNs, a BLSTM and an attention 

layer, in order to reach 84.2% accuracy. With traditional approaches (DT, MLP, RF), they 

reqach 72 − 78%. Lastly, in [9], they developed similar classifiers (DT, DNN) that reached 76 −

79%, and with PCA they reduced the features to 6, making accuracy drop to 71 − 75%. 

[13] and [11] have made studies that are very similar to our own, but they use the whole NSL-

KDD dataset as one, and after the preprocessing phase, they split it into training and 

validation/test subsets, like in our case B. The 99 − 99.6% accuracy obtained there in all the 

classifiers tested looks like the results extracted from our models, found in Table 8. However, 

the problem here lies with the real-life experience that case B-like experiments don’t provide. 

Many similar projects can also be found in Github, since the NSL-KDD is a very popular dataset 

for intrusion detection, some of which only utilise the KDDTrain+_20Percent and 

KDDTest+_20Percent for easier and faster processing. Most such projects either have minimal 

optimisation, and mostly analyse the NSL-KDD in depth, or develop only one method of a more 

advanced technique (CNN, Autoencoder) to develop the model itself better. 

In the next section, we will discuss the problems and limitations of this project, and future work 

that could improve the work done. 
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6. Discussion and future work 

Anomaly detection, and network security in general, is facing a lot of challenges. Some notable 

ones are: 

- The rapid development of networks today, which leads to a great increase of novel and 

unknown attacks, that take advantage of new gaps and services. 

- The ever growing reliance of our society on the Internet, where more and more data 

are generated and handled every year, already barely within our processing 

capabilities. 

- The Internet of Things (IoT), due to which devices of lower level, thus much less 

processing power and capabilities, are connected to each other, leaving us exposed to 

new security gaps that could even affect our health, other than our data. 

- The unavailability of open network traffic datasets, especially more recent, that could 

have newer attacks, because of security concerns and competition among service 

providers, which could refresh the reserch domain. 

- The incompetence that unsupervised learning still shows, even though it is very 

appropriate for anomaly detection, because the performance of models with 

unlabelled data cannot be tested correctly, while labelling whole datasets is a specially 

time consuming and difficult process. 

Further improvement on this particular project could include two types of upgrades. Firstly, 

since the NSL-KDD dataset is already labelled, there are many unsupervised learning 

mechanisms that could then be validated through the respective labels, including attention 

mechanisms, autoencoders, and clustering methods that we could optimise and compare. 

Even with supervised learning, a dive into more advanced DNN methodologies would provide 

better results, and the models could be much more flexible; DNN techniques that could be 

tested are Convolutions and Pooling methods, RNNs or LSTM approaches, etc. Deep Neural 

Networks are a central part of the machine learning and AI research nowadays, naturally, 

because of their flexible architecture, robust performance, and abundance of functions for 

every part of the models. Using only the normal traffic of the dataset, as is done in [7], could 

be very useful for unsupervised methods like autoencoders, that learn from the pattern of 

normal data, and recognise anomalies based on their deviation from them. 

The second course of action that could upgrade this project is data centric. With traffic data 

captured via Wireshark, thanks to the IT department’s cooperation, we could use the headers, 

the only part available to us because of privacy and security concerns, to create the features 

of the NSL-KDD for the connections provided, or part of them; we have seen throughout the 

pre-processing phase of our project that some variables influence the data more than others 

(e.g. with correlation). With the dataset created from the recent traffic data, a whole process 

of its own to accomplish, we have a potentially worthwhile sample of records, which would be 

unlabelled. Thankfully, the University has a very secure network infrastructure, being a big 

campus network where sensitive data moves around, so if we choose a node from the lower 

levels of it, where the data is already filtered through the security solutions of the network, we 
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can assume that the vast majority of our data will be normal traffic, without any anomalies 

present. This kind of data is exceptional to apply to autoencoder models, which learn from the 

uniform structure of normal data and then recognise the anomalies from their deviation 

compared to the rest. 

A project like that would be good for more advanced research, which can manage both the 

feature extraction, the data preparation and the advanced unsupervised models development, 

since there are no labels to apply any supervised methods available. Still, there would be 

problems and limitations with that kind of development too; namely, there is no way to know 

if the model would work optimally, as we can’t extract the percentages of TP, FP, TN and FN 

classifications without knowing for sure which datapoints are normal and abnormal traffic, and 

to test the model would require us to create synthetic attack type of data, or find attack records 

from available datasets and pre-process them so that they are uniform to our own unlabelled 

data and tested through the model. This kind of work is too complex and meticulous for the 

level of a master thesis. 

◦◦◦◦◦ 

To sum up, despite the challenges and limitations of anomaly detection in the domain of 

network security, research advances along with machine learning and AI, applying the same 

innovative methods. Unsupervised learning can be more useful in the real world, since the data 

in uses don’t need to be labelled, and it can detect unknown and novel attacks. In spite of the 

new wave of research focused on unsupervised learning in the past couple of years, there are 

still problems and limitations, like mentioned above, and supervised learning, or at least 

semi/self-supervised learning, still remain the most effective method to study the topic of 

network security. 

Even though the five algorithms are somewhat basic and outdated, this thesis provides results 

at a satisfactory level, not far behind state-of-the-art experiments. Its benefits lie in the fact 

that it utilizes one of the most popular datasets available, and goes through a thorough analysis 

of it, and subsequently compares the performance of five algorithms of supervised learning 

that are still very commonly used for classification problems and anomaly detection. Even with 

this kind of approach, we can see that the results of our classifiers are very close to state-of-

the-art research, which indicates how useful these methods still are for anomaly detection. 

There are many ways that the project can be improved in the future, either by developing more 

advanced models and moving to unsupervised learning solutions, or by trying to create a new 

dataset with similar features and apply unsupervised methods on it. 
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Annex A: table of the NSL-KDD features 

Table 9: list of all the features in NSL-KDD 

# feature description type value range 

0 duration time length of the connection continuous integer 0-54451 

1 protocol type protocol used in the connection categorical string NaN 

2 service destination network service used categorical string NaN 

3 flag status of the connection categorical string NaN 

4 src bytes 
number of bytes transferred in a single connection 
(source to destination) 

continuous integer 0-1379963888 

5 dst bytes 
number of bytes transferred in a single connection 
(destination to source) 

continuous integer 0-309937401 

6 land 
if src. and dst. IP addresses and port numbers are equal 
then =1, else =0 

binary integer 0 or 1 

7 
wrong 
fragment 

number of wrong fragments in the connection discrete integer 0, 1 or 3 

8 urgent 
number of urgent packets in the connection (urgent bit 
activated) 

discrete integer 0-3 

9 hot 
number of "hot" indicators in the content (entering 
system dir., creating/executing programs) 

continuous integer 0-101 

10 
num failed 
logins 

count of failed login attempts continuous integer 0-4 

11 logged in if successful login status =1, else =0 binary integer 0 or 1 

12 
num 
compromised 

number of compromised conditions continuous integer 0-7479 

13 root shell if root shell is obtained =1, else =0 binary integer 0 or 1 

14 su attempted 
if "su root" command is attempted or used =1, else =0 
(dataset also contains the value 2) 

discrete integer 0, 1 or 2 

15 num root 
number of "root" accesses or operations performed as a 
root in the connection 

continuous integer 0-7468 

16 
num file 
creations 

number of the file creation operations in the connection continuous integer 0-100 

17 num shells number of shell prompts continuous integer 0-2 

18 
num access 
files 

number of operations on access control files continuous integer 0-9 

19 
num outbound 
cmds 

number of outbound commands in an ftp session continuous integer 0 

20 is hot login 
if the login belongs to the "hot" list (root/admin) =1, else 
=0 

binary integer 0 or 1 

21 is guest login if the login is a "guest" =1, else =0 binary integer 0 or 1 
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22 count 
number of connections to the same destination host as 
the current connection (in time window) 

discrete integer 0-511 

23 srv count 
number of connections to the same service (port num.) 
as the current connection (in time window) 

discrete integer 0-511 

24 serror rate 
percentage of connections that have activated flags s0, 
s1, s2 or s3 among the connections in count (col. 22) 

discrete float 0.00-1.00 

25 srv serror rate 
percentage of connections that have activated flags s0, 
s1, s2 or s3 among the connections in srv count (col.23) 

discrete float 0.00-1.00 

26 rerror rate 
percentage of connections that have activated the flag 
REJ among the connections in count (col.22) 

discrete float 0.00-1.00 

27 srv rerror rate 
percentage of connections that have activated the flag 
REJ among the connections in srv count (col.23) 

discrete float 0.00-1.00 

28 same srv rate 
percentage of connections that were to the same service 
among the connections in count (col.22) 

discrete float 0.00-1.00 

29 diff srv rate 
percentage of connections that were to different services 
among the connections in count (col.22) 

discrete float 0.00-1.00 

30 
srv diff host 
rate 

percentage of connections that were to different 
machines among the connections in srv count (col.23) 

discrete float 0.00-1.00 

31 dst host count 
number of connections with the same destination host IP 
address 

discrete integer 0-255 

32 
dst host srv 
count 

number of connections with the same port number discrete integer 0-255 

33 
dst host same 
srv rate 

percentage of connections that were to the same 
services among the connections in dst host count (col.31) 

discrete float 0.00-1.00 

34 
dst host diff 
srv rate 

percentage of connections that were to different services 
among the connections in dst host count (col.31)  

discrete float 0.00-1.00 

35 
dst host same 
src port rate 

percentage of connections that were to the same 
services among the connections in dst host srv count 
(col.32) 

discrete float 0.00-1.00 

36 
dst host srv 
diff host rate 

percentage of connections that were to different 
destination machines among the connections in dst host 
srv count (col.32) 

discrete float 0.00-1.00 
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37 
dst host serror 
rate 

percentage of connections that have activated the flag 
s0, s1, s2, or s3 among the connections in dst host count 
(col. 31) 

discrete float 0.00-1.00 

38 
dst host srv 
serror rate 

percentage of connections that have activated the flag 
s0, s1, s2, or s3 among the connections in dst host srv 
count (col. 32) 

discrete float 0.00-1.00 

39 
dst host rerror 
rate 

percentage of connections that have activated the flag 
REJ among the connections in dst host count (col.31) 

discrete float 0.00-1.00 

40 
dst host srv 
rerror rate 

percentage of connections that have activated the flag 
REJ among the connections in dst host srv count (col.32) 

discrete float 0.00-1.00 

41 class type of traffic classification input  categorical string NaN 

42 difficulty level difficulty level discrete integer 0-21 
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Annex B: table of all the services in the NSL-KDD dataset 

Table 10: list of all the services in the NSL-KDD 

service 
in training 

set 
in test 

set 
 service 

in training 
set 

in test set 

http 40338 7853  name 451 37 

private 21853 4774  mtp 439 32 

domain_u 9043 894  echo 434 37 

smtp 7313 934  klogin 433 21 

ftp_data 6860 851  login 429 29 

eco_i 4586 262  ldap 410 19 

other 4359 838  netbios_dgm 405 25 

ecr_i 3077 752  sunrpc 381 159 

telnet 2353 1626  netbios_ssn 362 15 

finger 1767 136  netstat 360 26 

ftp 1754 692  netbios_ns 347 36 

auth 955 67  ssh 311 26 

Z39_50 862 45  kshell 299 24 

uucp 780 50  nntp 296 21 

courier 734 40  pop_3 264 1019 

bgp 710 46  sql_net 245 18 

whois 693 40  IRC 187 13 

uucp_path 689 46  ntp_u 168 10 

iso_tsap 687 48  rje 86 8 

time 654 36  pop_2 78 13 

imap4 647 306  remote_job 78 14 

nnsp 630 42  X11 73 15 

vmnet 617 43  printer 69 11 

urp_i 602 23  shell 65 16 

domain 569 51  urh_i 10 0 

ctf 563 41  red_i 8 0 

csnet_ns 545 34  tim_i 8 6 

supdup 544 27  pm_dump 5 16 

discard 538 26  tftp_u 3 1 

http_443 530 36  aol 2 0 

daytime 521 28  harvest 2 0 

gopher 518 34  http_8001 2 0 

efs 485 33  http_2784 1 0 

systat 477 32     

link 475 41     

exec 474 27     

hostnames 460 23     
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Annex C: list of all the classification reports 

Below, there are two lists, containing all the classification reports that resulted from the 

analysis of the classification models in the two different use cases. Further information about 

the models and discussion of their performance can be found in section  Classification models 

analysis, as well as information about the interpretation of the classification reports. 

 

C.1. Case A: using KDDTrain+ KDDTest+ as training and test sets 

Logistic Regression: 

Table 11: logistic regression on the multiclass training set 

  

 

  

 precision recall f1-score support 

 back 0.99 0.97 0.98 974 

buffer_overflow 0.60 0.86 0.71 21 

ftp_write 0.25 1.00 0.40 2 

guess_passwd 0.98 0.96 0.97 54 

imap 0.91 1.00 0.95 10 

ipsweep 0.97 0.97 0.97 3617 

land 0.61 0.85 0.71 13 

loadmodule 0.22 0.67 0.33 3 

multihop 0.29 0.40 0.33 5 

neptune 1.00 1.00 1.00 41223 

nmap 0.96 0.93 0.94 1540 

normal 1.00 0.99 0.99 67470 

perl 0.00 0.00 0.00 0 

phf 1.00 1.00 1.00 4 

pod 1.00 1.00 1.00 202 

portsweep 0.98 1.00 0.99 2890 

rootkit 0.20 0.50 0.29 4 

satan 0.95 0.98 0.97 3520 

smurf 1.00 0.99 0.99 2678 

spy 0.00 0.00 0.00 0 

teardrop 1.00 1.00 1.00 891 

warezclient 0.82 0.88 0.85 833 

warezmaster 0.80 0.84 0.82 19 

     
accuracy   0.99 125973 

macro avg 0.72 0.82 0.75 125973 

weighted avg 0.99 0.99 0.99 125973 
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Table 12: logistic regression on the multiclass test set (validation) 

 precision recall f1-score support 

apache2 0.00 0.00 0.00 0 

back 0.69 0.33 0.45 748 

buffer_overflow 0.05 0.50 0.09 2 

ftp_write 0.00 0.00 0.00 0 

guess_passwd 0.00 0.17 0.00 6 

httptunnel 0.00 0.00 0.00 0 

imap 0.00 0.00 0.00 49 

ipsweep 0.97 0.76 0.85 181 

land 0.43 1.00 0.60 3 

loadmodule 0.00 0.00 0.00 2 

mailbomb 0.00 0.00 0.00 0 

mscan 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 2 

named 0.00 0.00 0.00 0 

neptune 0.99 0.93 0.96 4984 

nmap 0.99 0.41 0.58 174 

normal 0.93 0.66 0.77 13724 

perl 0.00 0.00 0.00 0 

phf 0.50 0.17 0.25 6 

pod 0.95 0.71 0.81 55 

portsweep 0.92 0.50 0.64 290 

processtable 0.00 0.00 0.00 0 

ps 0.00 0.00 0.00 0 

rootkit 0.08 0.06 0.07 16 

saint 0.00 0.00 0.00 0 

satan 0.96 0.62 0.75 1151 

sendmail 0.00 0.00 0.00 0 

smurf 1.00 0.65 0.79 1026 

snmpgetattack 0.00 0.00 0.00 0 

snmpguess 0.00 0.00 0.00 0 

sqlattack 0.00 0.00 0.00 0 

teardrop 1.00 0.24 0.39 49 

udpstorm 0.00 0.00 0.00 0 

warezclient 0.00 0.00 0.00 75 

warezmaster 0.00 1.00 0.00 1 

worm 0.00 0.00 0.00 0 

xlock 0.00 0.00 0.00 0 

xsnoop 0.00 0.00 0.00 0 

xterm 0.00 0.00 0.00 0 

     
accuracy   0.70 22544 

macro avg 0.27 0.22 0.21 22544 

weighted avg 0.94 0.70 0.79 22544 
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Table 13: logistic regression on the binary training set 

 

 

 

 

 

Table 14: logistic regression on the binary test set (validation) 

 precision recall f1-score support 

abnormal 0.62 0.92 0.74 8713 

normal 0.93 0.65 0.76 13831 

     

accuracy   0.75 22544 

macro avg 0.77 0.78 0.75 22544 

weighted avg 0.81 0.75 0.76 22544 

 

Table 15: logistic regression on the 4-class training set 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 45984 

Probe 0.96 0.98 0.97 11497 

R2L 0.80 0.82 0.81 968 

U2R 0.54 0.88 0.67 32 

normal 0.99 0.99 0.99 67492 

     

accuracy   0.99 125973 

macro avg 0.86 0.93 0.89 125973 

weighted avg 0.99 0.99 0.99 125973 

 

Table 16: logistic regression on the 4-class test set (validation) 

 precision recall f1-score support 

DoS 0.84 0.92 0.88 6789 

Probe 0.71 0.86 0.78 2005 

R2L 0.04 0.50 0.08 238 

U2R 0.34 0.74 0.47 31 

normal 0.93 0.67 0.78 13481 

     

accuracy   0.76 22544 

macro avg 0.57 0.74 0.60 22544 

weighted avg 0.87 0.76 0.80 22544 

  

 precision recall f1-score support 

abnormal 0.97 0.98 0.97 57838 

normal 0.98 0.97 0.98 68135 

     

accuracy   0.97 125973 

macro avg 0.97 0.97 0.97 125973 

weighted avg 0.97 0.97 0.97 125973 
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Decision Tree: 

Table 17: decision tree on the multiclass training set 

 precision recall f1-score support 

back 1.00 1.00 1.00 956 

buffer_overflow 1.00 1.00 1.00 30 

ftp_write 1.00 1.00 1.00 8 

guess_passwd 1.00 1.00 1.00 53 

imap 1.00 1.00 1.00 11 

ipsweep 1.00 1.00 1.00 3608 

land 1.00 0.82 0.90 22 

loadmodule 1.00 1.00 1.00 9 

multihop 1.00 1.00 1.00 7 

neptune 1.00 1.00 1.00 41214 

nmap 0.99 1.00 1.00 1485 

normal 1.00 1.00 1.00 67342 

perl 1.00 1.00 1.00 3 

phf 1.00 1.00 1.00 4 

pod 1.00 1.00 1.00 200 

portsweep 1.00 1.00 1.00 2930 

rootkit 0.90 1.00 0.95 9 

satan 1.00 1.00 1.00 3632 

smurf 1.00 1.00 1.00 2646 

spy 1.00 1.00 1.00 2 

teardrop 1.00 1.00 1.00 892 

warezclient 1.00 1.00 1.00 890 

warezmaster 1.00 1.00 1.00 20 

     
accuracy   1.00 125973 

macro avg 1.00 0.99 0.99 125973 

weighted avg 1.00 1.00 1.00 125973 
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Table 18: decision tree on the multiclass test set (validation) 

 precision recall f1-score support 

apache2 0.00 0.00 0.00 0 

back 0.81 0.48 0.60 607 

buffer_overflow 0.05 0.12 0.07 8 

ftp_write 0.00 0.00 0.00 253 

guess_passwd 0.03 1.00 0.06 37 

httptunnel 0.00 0.00 0.00 0 

imap 0.00 0.00 0.00 2 

ipsweep 0.99 0.97 0.98 145 

land 0.71 0.62 0.67 8 

loadmodule 0.00 0.00 0.00 17 

mailbomb 0.00 0.00 0.00 0 

mscan 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 10 

named 0.00 0.00 0.00 0 

neptune 1.00 0.93 0.96 4990 

nmap 0.99 0.95 0.97 76 

normal 0.94 0.73 0.82 12623 

perl 0.50 0.25 0.33 4 

phf 0.50 1.00 0.67 1 

pod 0.93 0.72 0.81 53 

portsweep 0.92 0.40 0.55 367 

processtable 0.00 0.00 0.00 0 

ps 0.00 0.00 0.00 0 

rootkit 0.00 0.00 0.00 12 

saint 0.00 0.00 0.00 0 

satan 0.97 0.29 0.45 2457 

sendmail 0.00 0.00 0.00 0 

smurf 1.00 0.98 0.99 680 

snmpgetattack 0.00 0.00 0.00 0 

snmpguess 0.00 0.00 0.00 0 

spy 0.00 0.00 0.00 3 

sqlattack 0.00 0.00 0.00 0 

teardrop 1.00 0.24 0.39 49 

udpstorm 0.00 0.00 0.00 0 

warezclient 0.00 0.00 0.00 140 

warezmaster 0.00 0.50 0.00 2 

worm 0.00 0.00 0.00 0 

xlock 0.00 0.00 0.00 0 

xsnoop 0.00 0.00 0.00 0 

xterm 0.00 0.00 0.00 0 

     
accuracy   0.71 22544 

macro avg 0.28 0.25 0.23 22544 

weighted avg 0.94 0.71 0.79 22544 
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Table 19: decision tree on the binary training set 

 precision recall f1-score support 

abnormal 1.00 1.00 1.00 58637 

normal 1.00 1.00 1.00 67336 

     

accuracy   1.00 125973 

macro avg 1.00 1.00 1.00 125973 

weigthed avg 1.00 1.00 1.00 125973 

 

Table 20: decision tree on the binary test set (validation) 

 precision recall f1-score support 

abnormal 0.66 0.96 0.78 8879 

normal 0.96 0.68 0.80 13665 

     

accuracy   0.79 22544 

macro avg 0.81 0.82 0.79 22544 

weighted avg 0.84 0.79 0.79 22544 

 

Table 21: decision tree on the 4-class training set 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 45932 

Probe 1.00 1.00 1.00 11657 

R2L 1.00 1.00 1.00 995 

U2R 1.00 0.98 0.99 53 

normal 1.00 1.00 1.00 67336 

     
accuracy   1.00 125973 

macro avg  1.00 1.00 1.00 125973 

weighted avg 1.00 1.00 1.00 125973 

 

Table 22: decision tree on the 4-class test set (validation) 

 precision recall f1-score support 

DoS 0.80 0.96 0.87 6279 

Probe 0.64 0.80 0.71 1929 

R2L 0.08 0.98 0.14 222 

U2R 0.25 0.55 0.35 31 

normal 0.96 0.66 0.79 14083 

     

accuracy   0.76 22544 

macro avg 0.55 0.79 0.57 22544 

weighted avg 0.88 0.76 0.80 22544 
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K-nearest neighbours: 

Table 23: knn on the multiclass training set 

 precision recall f1-score support 

back 0.95 0.96 0.96 949 

buffer_overflow 0.00 0.00 0.00 0 

ftp_write 0.00 0.00 0.00 0 

guess_passwd 0.92 0.70 0.80 70 

imap 0.00 0.00 0.00 0 

ipsweep 0.94 0.98 0.96 3451 

land 0.00 0.00 0.00 0 

loadmodule 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 0 

neptune 1.00 0.98 0.99 41898 

nmap 0.96 0.95 0.95 1514 

normal 1.00 0.99 0.99 67620 

perl 0.00 0.00 0.00 0 

phf 0.00 0.00 0.00 0 

pod 0.99 0.99 0.99 201 

portsweep 0.85 0.99 0.92 2529 

rootkit 0.00 0.00 0.00 0 

satan 0.92 0.98 0.95 3400 

smurf 1.00 0.99 0.99 2680 

spy 0.00 0.00 0.00 0 

teardrop 0.99 1.00 1.00 884 

warezclient 0.84 0.96 0.90 777 

warezmaster 0.00 0.00 0.00 0 

     

accuracy   0.99 125973 

macro avg 0.49 0.50 0.50 125973 

weighted avg 0.99 0.99 0.99 125973 
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Table 24: knn on multiclass test set (validation) 

 precision recall f1-score support 

apache2 0.00 0.00 0.00 0 

back 0.89 0.40 0.55 804 

buffer_overflow 0.00 0.00 0.00 0 

ftp_write 0.00 0.00 0.00 0 

guess_passwd 0.30 0.99 0.46 368 

httptunnel 0.00 0.00 0.00 0 

imap 0.00 0.00 0.00 0 

ipsweep 0.96 0.79 0.87 173 

land 0.00 0.00 0.00 0 

loadmodule 0.00 0.00 0.00 0 

mailbomb 0.00 0.00 0.00 0 

mscan 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 0 

named 0.00 0.00 0.00 0 

neptune 1.00 0.86 0.93 5363 

nmap 1.00 0.42 0.60 172 

normal 0.96 0.69 0.80 13553 

perl 0.00 0.00 0.00 0 

phf 0.00 0.00 0.00 0 

pod 0.88 0.69 0.77 52 

portsweep 0.89 0.72 0.80 192 

processtable 0.00 0.00 0.00 0 

ps 0.00 0.00 0.00 0 

rootkit 0.00 0.00 0.00 0 

saint 0.00 0.00 0.00 0 

satan 0.82 0.54 0.65 1105 

sendmail 0.00 0.00 0.00 0 

smurf 1.00 0.99 0.99 671 

snmpgetattack 0.00 0.00 0.00 0 

snmpguess 0.00 0.00 0.00 0 

sqlattack 0.00 0.00 0.00 0 

teardrop 0.67 0.18 0.28 45 

udpstorm 0.00 0.00 0.00 0 

warezclient 0.00 0.00 0.00 46 

warezmaster 0.00 0.00 0.00 0 

worm 0.00 0.00 0.00 0 

xlock 0.00 0.00 0.00 0 

xsnoop 0.00 0.00 0.00 0 

xterm 0.00 0.00 0.00 0 

     

accuracy   0.72 22544 

macro avg 0.24 0.19 0.20 22544 

weighted avg 0.94 0.72 0.81 22544 

  



65 
 

Table 25: knn on binary training set 

 precision recall f1-score support 

abnormal 0.99 0.99 0.99 58450 

normal 1.00 0.99 0.99 67523 

     

accuracy   0.99 125973 

macro avg 0.99 0.99 0.99 125973 

weighted avg 0.99 0.99 0.99 125973 

 

Table 26: knn on binary test set (validation) 

 precision recall f1-score support 

abnormal 0.66 0.92 0.77 9182 

normal 0.93 0.67 0.78 13362 

     

accuracy   0.77 22544 

macro avg 0.79 0.80 0.77 22544 

weighted avg 0.82 0.77 0.77 22544 

 

Table 27: knn on 4-class training set 

 precision recall f1-score support 

DoS 1.00 0.99 1.00 46282 

Probe 0.96 0.99 0.98 11296 

R2L 0.93 0.94 0.93 984 

U2R 0.38 0.69 0.49 29 

normal 1.00 1.00 1.00 67382 

     

accuracy   0.99 125973 

macro avg 0.85 0.92 0.88 125973 

weighted avg 0.99 0.99 0.99 125973 

 

Table 28: knn on 4-class test set (validation) 

 precision recall f1-score support 

DoS 0.83 0.89 0.86 6900 

Probe 0.53 0.66 0.59 1962 

R2L 0.04 0.90 0.07 114 

U2R 0.27 0.64 0.38 28 

normal 0.93 0.66 0.77 13540 

     

accuracy   0.74 22544 

macro avg 0.52 0.75 0.53 22544 

weighted avg 0.86 0.74 0.78 22544 
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Gaussian Naïve Bayes: 

Table 29: Gaussian Naive Bayes on multiclass training set 

 precision recall f1-score support 

back 1.00 0.08 0.15 12087 

buffer_overflow 0.57 0.05 0.09 331 

ftp_write 1.00 0.04 0.07 208 

guess_passwd 1.00 0.95 0.97 56 

imap 1.00 0.85 0.92 13 

ipsweep 0.99 0.33 0.49 10793 

land 1.00 0.72 0.84 25 

loadmodule 0.78 0.03 0.05 265 

multihop 0.43 0.04 0.07 83 

neptune 1.00 1.00 1.00 41128 

nmap 0.18 0.51 0.27 533 

normal 0.65 0.98 0.78 44889 

perl 1.00 1.00 1.00 3 

phf 1.00 1.00 1.00 4 

pod 1.00 0.91 0.95 222 

portsweep 0.87 0.59 0.71 4312 

rootkit 0.60 0.01 0.01 1109 

satan 0.01 0.72 0.02 53 

smurf 1.00 0.92 0.96 2861 

spy 1.00 1.00 1.00 2 

teardrop 1.00 0.29 0.45 3055 

warezclient 0.35 0.12 0.18 2580 

warezmaster 1.00 0.01 0.03 1361 

     

accuracy   0.77 125973 

macro avg 0.80 0.53 0.52 125973 

weighted avg 0.85 0.77 0.73 125973 
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Table 30: Gaussian Naive Bayes on multiclass test set (validation) 

 precision recall f1-score support 

apache2 0.00 0.00 0.00 0 

back 0.38 0.06 0.10 2358 

buffer_overflow 0.00 0.00 0.00 0 

ftp_write 0.33 0.01 0.02 84 

guess_passwd 0.02 1.00 0.04 27 

httptunnel 0.00 0.00 0.00 0 

imap 0.00 0.00 0.00 0 

ipsweep 0.99 0.22 0.35 646 

land 1.00 1.00 1.00 7 

loadmodule 0.00 0.00 0.00 98 

mailbomb 0.00 0.00 0.00 0 

mscan 0.00 0.00 0.00 0 

multihop 0.22 0.18 0.20 22 

named 0.00 0.00 0.00 0 

neptune 0.98 0.97 0.98 4701 

nmap 1.00 0.41 0.58 179 

normal 0.62 0.59 0.60 10215 

perl 0.00 0.00 0.00 0 

phf 0.50 1.00 0.67 1 

pod 0.98 0.65 0.78 62 

portsweep 0.74 0.11 0.19 1070 

processtable 0.00 0.00 0.00 0 

ps 0.00 0.00 0.00 0 

rootkit 0.15 0.00 0.01 489 

saint 0.00 0.00 0.00 0 

satan 0.00 0.14 0.01 21 

sendmail 0.00 0.00 0.00 0 

smurf 0.98 0.97 0.97 669 

snmpgetattack 0.00 0.00 0.00 0 

snmpguess 0.00 0.00 0.00 0 

sqlattack 0.00 0.00 0.00 0 

teardrop 1.00 0.01 0.02 1335 

udpstorm 0.00 0.00 0.00 0 

warezclient 0.00 0.00 0.00 216 

warezmaster 0.24 0.66 0.35 344 

worm 0.00 0.00 0.00 0 

xlock 0.00 0.00 0.00 0 

xsnoop 0.00 0.00 0.00 0 

xterm 0.00 0.00 0.00 0 

     

accuracy   0.53 22544 

macro avg 0.26 0.20 0.18 22544 

weighted avg 0.70 0.53 0.55 22544 
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Table 31: Gaussian Naive Bayes on binary training set 

 precision recall f1-score support 

abnormal 0.66 1.00 0.79 38781 

normal 1.00 0.77 0.87 87192 

     

accuracy   0.84 125973 

macro avg 0.83 0.88 0.83 125973 

weighted avg 0.89 0.84 0.85 125973 

 

Table 32: Gaussian Naive Bayes on binary test set (validation) 

 precision recall f1-score support 

     
abnormal 0.22 0.98 0.36 2909 

normal 0.99 0.49 0.66 19635 

     
accuracy   0.55 22544 

macro avg 0.61 0.74 0.51 22544 

weigthed avg 0.89 0.55 0.62 22544 

 

Table 33: Gaussian Naive Bayes on 4-class training set 

 precision recall f1-score support 

DoS 0.89 0.99 0.93 41369 

Probe 0.13 0.96 0.23 1594 

R2L 0.51 0.02 0.04 25292 

U2R 1.00 0.01 0.02 5712 

normal 0.58 0.75 0.65 52006 

     
accuracy   0.65 125973 

macro avg 0.62 0.54 0.38 125973 

weighted avg 0.68 0.65 0.59 125973 

 

Table 34: Gaussian Naive Bayes on 4-class test set (validation) 

 precision recall f1-score support 

DoS 0.39 0.88 0.54 3346 

Probe 0.08 0.91 0.15 215 

R2L 0.32 0.14 0.20 6499 

U2R 0.67 0.04 0.08 1074 

normal 0.55 0.47 0.50 11410 

     
accuracy   0.42 22544 

macro avg 0.40 0.49 0.30 22544 

weighted avg 0.46 0.42 0.40 22544 
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Multi-layer perceptron: 

Table 35: MLP on multiclass training set 

 precision recall f1-score support 

back 0.99 0.98 0.99 963 

buffer_overflow 0.77 1.00 0.87 23 

ftp_write 0.75 1.00 0.86 6 

guess_passwd 1.00 1.00 1.00 53 

imap 1.00 0.92 0.96 12 

ipsweep 0.99 0.99 0.99 3622 

land 1.00 0.72 0.84 25 

loadmodule 0.78 1.00 0.88 7 

multihop 0.57 0.80 0.67 5 

neptune 1.00 1.00 1.00 41215 

nmap 0.96 0.99 0.98 1455 

normal 1.00 1.00 1.00 67388 

perl 1.00 1.00 1.00 3 

phf 1.00 1.00 1.00 4 

pod 0.99 1.00 0.99 198 

portsweep 1.00 1.00 1.00 2927 

rootkit 0.40 1.00 0.57 4 

satan 0.99 1.00 0.99 3613 

smurf 1.00 1.00 1.00 2640 

spy 1.00 1.00 1.00 2 

teardrop 1.00 1.00 1.00 892 

warezclient 0.96 0.96 0.96 892 

warezmaster 1.00 0.83 0.91 24 

     

accuracy   1.00 125973 

macro avg 0.92 0.96 0.93 125973 

weighted avg 1.00 1.00 1.00 125973 
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Table 36: MLP on multiclass test set (validation) 

 precision recall f1-score support 

apache2 0.00 0.00 0.00 0 

back 0.94 0.41 0.57 822 

buffer_overflow 0.05 0.50 0.09 2 

ftp_write 0.33 0.01 0.01 131 

guess_passwd 0.00 0.25 0.00 4 

httptunnel 0.00 0.00 0.00 0 

imap 0.00 0.00 0.00 32 

ipsweep 0.97 0.83 0.90 165 

land 1.00 0.39 0.56 18 

loadmodule 0.00 0.00 0.00 9 

mailbomb 0.00 0.00 0.00 0 

mscan 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 10 

named 0.00 0.00 0.00 0 

neptune 1.00 0.95 0.98 4863 

nmap 0.99 0.43 0.60 168 

normal 0.97 0.68 0.80 13994 

perl 0.50 0.33 0.40 3 

phf 0.50 0.25 0.33 4 

pod 0.88 0.71 0.78 51 

portsweep 0.94 0.35 0.51 421 

processtable 0.00 0.00 0.00 0 

ps 0.00 0.00 0.00 0 

rootkit 0.00 0.00 0.00 3 

saint 0.00 0.00 0.00 0 

satan 0.77 0.56 0.65 1025 

sendmail 0.00 0.00 0.00 0 

smurf 1.00 0.99 0.99 674 

snmpgetattack 0.00 0.00 0.00 0 

snmpguess 0.00 0.00 0.00 0 

spy 0.00 0.00 0.00 32 

sqlattack 0.00 0.00 0.00 0 

teardrop 1.00 0.24 0.39 49 

udpstorm 0.00 0.00 0.00 0 

warezclient 0.00 0.00 0.00 10 

warezmaster 0.04 0.72 0.08 54 

worm 0.00 0.00 0.00 0 

xlock 0.00 0.00 0.00 0 

xsnoop 0.00 0.00 0.00 0 

xterm 0.00 0.00 0.00 0 

     
accuracy   0.72 22544 

macro avg 0.30 0.21 0.22 22544 

weighted avg 0.96 0.72 0.81 22544 
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Table 37: MLP on binary training set 

 precision recall f1-score support 

abnormal 1.00 1.00 1.00 58571 

normal 1.00 1.00 1.00 67402 

     
accuracy   1.00 125973 

macro avg 1.00 1.00 1.00 125973 

weighted avg 1.00 1.00 1.00 125973 

 

Table 38: MLP on binary test set (validation) 

 precision recall f1-score support 

abnormal 0.66 0.97 0.78 8769 

normal 0.97 0.68 0.80 13775 

     
accuracy   0.79 22544 

macro avg 0.81 0.82 0.79 22544 

weighted avg 0.85 0.79 0.79 22544 

 

Table 39: MLP on 4-class training set 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 45902 

Probe 1.00 1.00 1.00 11660 

R2L 0.94 0.97 0.96 956 

U2R 0.75 0.95 0.84 41 

normal 1.00 1.00 1.00 67414 

     
accuracy   1.00 125973 

macro 0.94 0.98 0.96 125973 

weighted avg 1.00 1.00 1.00 125973 

 

Table 40: MLP on 4-class test set (validation) 

 precision recall f1-score support 

DoS 0.82 0.97 0.89 6365 

Probe 0.59 0.84 0.69 1686 

R2L 0.11 0.79 0.19 391 

U2R 0.31 0.88 0.46 24 

normal 0.97 0.67 0.79 14078 

     
accuracy   0.77 22544 

macro avg 0.56 0.83 0.61 22544 

weighted avg 0.89 0.77 0.80 22544 
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C.2. Case B: splitting the KDDTrain+ for training and test sets 

Logistic Regression: 

Table 41: logistic regression on the split multiclass training set 

 precision recall f1-score support 

back 0.99 0.95 0.97 790 

buffer_overflow 0.70 0.82 0.76 17 

ftp_write 0.17 0.50 0.25 2 

guess_passwd 0.97 0.93 0.95 42 

imap 0.38 1.00 0.55 3 

ipsweep 0.97 0.97 0.97 2924 

land 1.00 0.70 0.82 20 

loadmodule 0.11 0.25 0.15 4 

multihop 0.00 0.00 0.00 1 

neptune 1.00 1.00 1.00 32966 

nmap 0.95 0.92 0.94 1246 

normal 0.99 0.99 0.99 53988 

perl 0.00 0.00 0.00 0 

phf 1.00 0.57 0.73 7 

pod 0.99 1.00 0.99 158 

portsweep 0.98 1.00 0.99 2280 

rootkit 0.17 0.33 0.22 3 

satan 0.94 0.98 0.96 2780 

smurf 1.00 0.99 0.99 2164 

spy 0.00 0.00 0.00 0 

teardrop 1.00 1.00 1.00 731 

warezclient 0.80 0.88 0.84 640 

warezmaster 0.58 0.58 0.58 12 

     
accuracy   0.99 100778 

macro 0.68 0.71 0.68 100778 

weighted 0.99 0.99 0.99 100778 
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Table 42: logistic regression on the split multiclass test set (validation) 

 precision recall f1-score support 

back 0.97 0.94 0.95 203 
buffer_overflow 0.50 0.83 0.62 6 

ftp_write 0.50 0.50 0.50 2 

guess_passwd 0.77 1.00 0.87 10 

imap 0.33 1.00 0.50 1 

ipsweep 0.97 0.96 0.96 710 

land 1.00 0.80 0.89 5 

loadmodule 0.00 0.00 0.00 1 

multihop 0.00 0.00 0.00 0 

neptune 1.00 1.00 1.00 8266 

nmap 0.98 0.92 0.95 309 

normal 0.99 0.99 0.99 13485 

perl 1.00 1.00 1.00 1 

phf 0.00 0.00 0.00 1 

pod 0.98 1.00 0.99 40 

portsweep 0.98 1.00 0.99 613 

rootkit 0.00 0.00 0.00 1 

satan 0.93 0.99 0.96 681 

smurf 1.00 0.98 0.99 517 

spy 0.00 0.00 0.00 0 

teardrop 1.00 1.00 1.00 161 

warezclient 0.82 0.87 0.84 174 

warezmaster 1.00 1.00 1.00 8 

     

accuracy   0.99 25195 

macro 0.68 0.73 0.70 25195 

weighted 0.99 0.99 0.99 25195 
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Table 43: logistic regression on the split binary training set 

 

 

 

 

 

 

Table 44: logistic regression on the split binary test set (validation) 

 precision recall f1-score support 

abnormal 0.97 0.98 0.97 11575 

normal 0.98 0.97 0.98 13620 

     

accuracy   0.97 25195 

macro avg 0.97 0.97 0.97 25195 

weighted avg 0.97 0.97 0.97 25195 

 

Table 45: logistic regression on the split 4-class training set 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 36845 

Probe 0.96 0.98 0.97 9161 

R2L 0.74 0.81 0.77 718 

U2R 0.54 0.83 0.66 24 

normal 0.99 0.99 0.99 54030 

     

accuracy   0.99 100778 

macro avg 0.85 0.92 0.88 100778 

weighted avg 0.99 0.99 0.99 100778 

 

Table 46: logistic regression on the split 4-class test set (validation) 

 precision recall f1-score support 

DoS 1.00 0.99 1.00 9191 

Probe 0.96 0.98 0.97 2293 

R2L 0.76 0.83 0.79 198 

U2R 0.47 0.78 0.58 9 

normal 0.99 0.99 0.99 13504 

     

accuracy   0.99 25195 

macro avg 0.84 0.91 0.87 25195 

weighted avg 0.99 0.99 0.99 25195 

 precision recall f1-score support 

abnormal 0.96 0.98 0.97 46228 

normal 0.98 0.97 0.98 54550 

     

accuracy   0.97 100778 

macro avg 0.97 0.97 0.97 100778 

weighted avg 0.97 0.97 0.97 100778 
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Decision Tree: 

Table 47: decision tree on the split multiclass training set 

 precision recall f1-score support 

back 1.00 1.00 1.00 760 

buffer_overflow 1.00 1.00 1.00 20 

ftp_write 1.00 1.00 1.00 6 

guess_passwd 1.00 1.00 1.00 40 

imap 1.00 1.00 1.00 8 

ipsweep 1.00 1.00 1.00 2901 

land 1.00 0.82 0.90 17 

loadmodule 1.00 1.00 1.00 9 

multihop 1.00 1.00 1.00 5 

neptune 1.00 1.00 1.00 32955 

nmap 1.00 1.00 1.00 1196 

normal 1.00 1.00 1.00 53885 

perl 1.00 1.00 1.00 2 

phf 1.00 1.00 1.00 4 

pod 0.99 1.00 1.00 159 

portsweep 1.00 1.00 1.00 2307 

rootkit 0.83 1.00 0.91 5 

satan 1.00 1.00 1.00 2910 

smurf 1.00 1.00 1.00 2141 

spy 1.00 1.00 1.00 1 

teardrop 1.00 1.00 1.00 731 

warezclient 1.00 1.00 1.00 704 

warezmaster 1.00 1.00 1.00 12 

     
accuracy   1.00 100778 

macro 0.99 0.99 0.99 100778 

weighted 1.00 1.00 1.00 100778 
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Table 48: decision tree on the split multiclass test set (validation) 

 precision recall f1-score support 

back 1.00 0.99 1.00 197 

buffer_overflow 0.80 0.73 0.76 11 

ftp_write 0.00 0.00 0.00 4 

guess_passwd 0.77 1.00 0.87 10 

imap 1.00 1.00 1.00 3 

ipsweep 0.99 0.99 0.99 704 

land 0.75 0.60 0.67 5 

loadmodule 0.00 0.00 0.00 4 

multihop 0.00 0.00 0.00 0 

neptune 1.00 1.00 1.00 8261 

nmap 0.98 0.99 0.98 290 

normal 1.00 1.00 1.00 13457 

perl 0.00 0.00 0.00 0 

phf 0.00 0.00 0.00 2 

pod 1.00 1.00 1.00 41 

portsweep 0.99 0.99 0.99 627 

rootkit 0.00 0.00 0.00 1 

satan 0.99 0.99 0.99 720 

smurf 1.00 1.00 1.00 505 

spy 0.00 0.00 0.00 1 

teardrop 1.00 1.00 1.00 161 

warezclient 0.97 0.99 0.98 182 

warezmaster 1.00 0.89 0.94 9 

     

accuracy   1.00 25195 

macro avg 0.66 0.66 0.66 25195 

weighted avg 1.00 1.00 1.00 25195 
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Table 49: decision tree on the split binary training set 

 precision recall f1-score support 

abnormal 1.00 1.00 1.00 46897 

normal 1.00 1.00 1.00 53881 

     

accuracy   1.00 100778 

macro avg 1.00 1.00 1.00 100778 

weigthed avg 1.00 1.00 1.00 100778 

 

Table 50: decision tree on the split binary test set (validation) 

 precision recall f1-score support 

abnormal 1.00 1.00 1.00 11736 

normal 1.00 1.00 1.00 13459 

     

accuracy   1.00 25195 

macro avg 1.00 1.00 1.00 25195 

weighted avg 1.00 1.00 1.00 25195 

 

Table 51: decision tree on the split 4-class training set 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 36765 

Probe 1.00 1.00 1.00 9314 

R2L 1.00 1.00 1.00 780 

U2R 1.00 0.97 0.99 38 

normal 1.00 1.00 1.00 53881 

     
accuracy   1.00 100778 

macro avg  1.00 0.99 1.00 100778 

weighted avg 1.00 1.00 1.00 100778 

 

Table 52: decision tree on the split 4-class test set (validation) 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 9164 

Probe 0.99 1.00 0.99 2339 

R2L 0.96 0.97 0.97 213 

U2R 0.67 0.62 0.65 16 

normal 1.00 1.00 1.00 13463 

     

accuracy   1.00 25195 

macro avg 0.92 0.92 0.92 25195 

weighted avg 1.00 1.00 1.00 25195 
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K-nearest neighbours: 

Table 53: knn on the split multiclass training set 

 precision recall f1-score support 

back 0.96 0.96 0.96 760 

buffer_overflow 0.00 0.00 0.00 0 

ftp_write 0.00 0.00 0.00 0 

guess_passwd 0.97 0.66 0.79 59 

imap 0.00 0.00 0.00 0 

ipsweep 0.93 0.99 0.96 2728 

land 0.00 0.00 0.00 0 

loadmodule 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 0 

neptune 1.00 0.98 0.99 33544 

nmap 0.96 0.95 0.95 1217 

normal 1.00 0.99 0.99 54113 

perl 0.00 0.00 0.00 0 

phf 0.00 0.00 0.00 0 

pod 0.99 0.98 0.98 161 

portsweep 0.84 0.99 0.91 1961 

rootkit 0.00 0.00 0.00 0 

satan 0.92 0.98 0.95 2726 

smurf 1.00 0.99 0.99 2171 

spy 0.00 0.00 0.00 0 

teardrop 0.99 1.00 1.00 725 

warezclient 0.84 0.96 0.90 613 

warezmaster 0.00 0.00 0.00 0 

     

accuracy   0.99 100778 

macro avg 0.50 0.50 0.49 100778 

weighted avg 0.99 0.99 0.99 100778 
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Table 54: knn on the split multiclass test set (validation) 

 precision recall f1-score support 

back 0.94 0.98 0.96 189 

buffer_overflow 0.00 0.00 0.00 0 

ftp_write 0.00 0.00 0.00 0 

guess_passwd 0.85 0.55 0.67 20 

imap 0.00 0.00 0.00 0 

ipsweep 0.93 0.99 0.96 665 

land 0.00 0.00 0.00 0 

multihop 0.00 0.00 0.00 0 

neptune 1.00 0.98 0.99 8411 

nmap 0.97 0.94 0.96 302 

normal 1.00 0.99 0.99 13531 

perl 0.00 0.00 0.00 0 

pod 0.98 1.00 0.99 40 

portsweep 0.84 1.00 0.91 524 

rootkit 0.00 0.00 0.00 0 

satan 0.91 0.98 0.94 672 

smurf 1.00 0.97 0.98 522 

spy 0.00 0.00 0.00 0 

teardrop 0.99 1.00 0.99 159 

warezclient 0.83 0.96 0.89 160 

warezmaster 0.00 0.00 0.00 0 

     
accuracy   0.99 25195 

macro avg 0.53 0.54 0.53 25195 

weighted avg 0.99 0.99 0.99 25195 
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Table 55: knn on the split binary training set 

 precision recall f1-score support 

abnormal 0.99 0.99 0.99 46759 

normal 0.99 0.99 0.99 54019 

     

accuracy   0.99 100778 

macro avg 0.99 0.99 0.99 100778 

weighted avg 0.99 0.99 0.99 100778 

 

Table 56: knn on the split binary test set (validation) 

 precision recall f1-score support 

abnormal 0.99 0.99 0.99 11691 

normal 0.99 0.99 0.99 13504 

     

accuracy   0.99 25195 

macro avg 0.99 0.99 0.99 25195 

weighted avg 0.99 0.99 0.99 25195 

 

Table 57: knn on the split 4-class training set 

 precision recall f1-score support 

DoS 1.00 0.98 0.99 37360 

Probe 0.92 0.99 0.96 8647 

R2L 0.81 0.94 0.87 676 

U2R 0.00 0.00 0.00 0 

normal 1.00 0.99 0.99 54095 

     

accuracy   0.99 100778 

macro avg 0.75 0.78 0.76 100778 

weighted avg 0.99 0.99 0.99 100778 

 

Table 58: knn on the split 4-class test set (validation) 

 precision recall f1-score support 

DoS 1.00 0.98 0.99 9321 

Probe 0.92 0.99 0.95 2165 

R2L 0.79 0.92 0.85 183 

U2R 0.00 0.00 0.00 0 

normal 1.00 0.99 0.99 13526 

     

accuracy   0.99 25195 

macro avg 0.74 0.78 0.76 25195 

weighted avg 0.99 0.99 0.99 25195 
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Gaussian Naïve Bayes: 

Table 59: Gaussian Naive Bayes on the split multiclass training set 

 precision recall f1-score support 

back 1.00 0.08 0.15 9634 

buffer_overflow 0.35 0.09 0.14 82 

ftp_write 1.00 0.04 0.08 147 

guess_passwd 1.00 1.00 1.00 40 

imap 1.00 0.80 0.89 10 

ipsweep 0.99 0.31 0.47 9198 

land 1.00 0.70 0.82 20 

loadmodule 0.89 0.04 0.08 197 

multihop 0.40 0.04 0.07 54 

neptune 1.00 1.00 1.00 32873 

nmap 0.18 0.43 0.26 510 

normal 0.64 0.98 0.78 35421 

perl 1.00 1.00 1.00 2 

phf 1.00 1.00 1.00 4 

pod 1.00 0.90 0.95 177 

portsweep 0.89 0.58 0.70 3529 

rootkit 0.83 0.00 0.01 1108 

satan 0.01 0.66 0.02 53 

smurf 1.00 0.93 0.96 2307 

spy 1.00 1.00 1.00 1 

teardrop 1.00 0.30 0.46 2448 

warezclient 0.37 0.13 0.20 1924 

warezmaster 1.00 0.01 0.02 1039 

     

accuracy   0.76 100778 

macro avg 0.81 0.52 0.52 100778 

weighted avg 0.85 0.76 0.72 100778 
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Table 60: Gaussian Naive Bayes on the split multiclass test set (validation) 

 precision recall f1-score support 

back 1.00 0.08 0.15 9634 

buffer_overflow 0.35 0.09 0.14 82 

ftp_write 1.00 0.04 0.08 147 

guess_passwd 1.00 1.00 1.00 40 

imap 1.00 0.80 0.89 10 

ipsweep 0.99 0.31 0.47 9198 

land 1.00 0.70 0.82 20 

loadmodule 0.89 0.04 0.08 197 

multihop 0.40 0.04 0.07 54 

neptune 1.00 1.00 1.00 32873 

nmap 0.18 0.43 0.26 510 

normal 0.64 0.98 0.78 35421 

perl 1.00 1.00 1.00 2 

phf 1.00 1.00 1.00 4 

pod 1.00 0.90 0.95 177 

portsweep 0.89 0.58 0.70 3529 

rootkit 0.83 0.00 0.01 1108 

satan 0.01 0.66 0.02 53 

smurf 1.00 0.93 0.96 2307 

spy 1.00 1.00 1.00 1 

teardrop 1.00 0.30 0.46 2448 

warezclient 0.37 0.13 0.20 1924 

warezmaster 1.00 0.01 0.02 1039 

     
accuracy   0.76 100778 

macro avg 0.81 0.52 0.52 100778 

weighted avg 0.85 0.76 0.72 100778 
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Table 61: Gaussian Naive Bayes on the split binary training set 

 precision recall f1-score support 

abnormal 0.67 1.00 0.80 31514 

normal 1.00 0.78 0.87 69264 

     

accuracy   0.85 100778 

macro avg 0.83 0.89 0.84 100778 

weighted avg 0.90 0.85 0.85 100778 

 

Table 62: Gaussian Naive Bayes on the split binary test set (validation) 

 precision recall f1-score support 

abnormal 0.67 1.00 0.80 7876 

normal 1.00 0.78 0.87 17319 

     
accuracy   0.85 25195 

macro avg 0.83 0.89 0.84 25195 

weigthed avg 0.90 0.85 0.85 25195 

 

Table 63: Gaussian Naive Bayes on the split 4-class training set 

 precision recall f1-score support 

DoS 0.89 0.99 0.94 33310 

Probe 0.18 0.97 0.30 1718 

R2L 0.55 0.02 0.04 21711 

U2R 1.00 0.01 0.02 4102 

normal 0.56 0.75 0.64 39937 

     
accuracy   0.65 100778 

macro avg 0.64 0.55 0.39 100778 

weighted avg 0.68 0.65 0.58 100778 

 

Table 64: Gaussian Naive Bayes on the split 4-class test set (validation) 

 precision recall f1-score support 

DoS 0.89 0.99 0.94 8266 

Probe 0.19 0.97 0.32 456 

R2L 0.57 0.02 0.04 5441 

U2R 0.87 0.01 0.03 1017 

normal 0.56 0.75 0.64 10015 

     
accuracy   0.65 25195 

macro avg 0.61 0.55 0.39 25195 

weighted avg 0.68 0.65 0.58 25195 
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Multi-layer perceptron: 

Table 65: MLP on the split multiclass training set 

 precision recall f1-score support 

back 0.99 1.00 1.00 755 

buffer_overflow 0.90 0.95 0.92 19 

ftp_write 0.67 1.00 0.80 4 

guess_passwd 1.00 1.00 1.00 40 

imap 1.00 1.00 1.00 8 

ipsweep 1.00 0.98 0.99 2935 

land 1.00 0.70 0.82 20 

loadmodule 0.78 1.00 0.88 7 

multihop 0.40 1.00 0.57 2 

neptune 1.00 1.00 1.00 32956 

nmap 0.95 0.99 0.97 1152 

normal 1.00 1.00 1.00 53990 

perl 1.00 1.00 1.00 2 

phf 1.00 1.00 1.00 4 

pod 0.99 1.00 0.99 158 

portsweep 1.00 1.00 1.00 2305 

rootkit 0.67 1.00 0.80 4 

satan 0.99 1.00 1.00 2886 

smurf 1.00 1.00 1.00 2133 

spy 1.00 1.00 1.00 1 

teardrop 1.00 1.00 1.00 731 

warezclient 0.88 0.95 0.91 650 

warezmaster 1.00 0.75 0.86 16 

     

accuracy   1.00 100778 

macro avg 0.92 0.97 0.93 100778 

weighted avg 1.00 1.00 1.00 100778 
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Table 66: MLP on the split multiclass test set (validation) 

 precision recall f1-score support 

back 0.98 0.99 0.99 194 

buffer_overflow 0.50 0.62 0.56 8 

ftp_write 0.50 0.50 0.50 2 

guess_passwd 0.85 1.00 0.92 11 

imap 1.00 1.00 1.00 3 

ipsweep 0.99 0.97 0.98 718 

land 1.00 0.80 0.89 5 

multihop 0.00 0.00 0.00 0 

neptune 1.00 1.00 1.00 8259 

nmap 0.94 0.99 0.96 279 

normal 1.00 0.99 1.00 13499 

perl 1.00 1.00 1.00 1 

pod 0.98 1.00 0.99 40 

portsweep 0.99 0.99 0.99 622 

rootkit 0.00 0.00 0.00 0 

satan 0.98 0.99 0.98 713 

smurf 0.99 0.99 0.99 504 

spy 0.00 0.00 0.00 0 

teardrop 1.00 1.00 1.00 161 

warezclient 0.86 0.96 0.91 166 

warezmaster 1.00 0.80 0.89 10 

     
accuracy   1.00 25195 

macro avg 0.79 0.79 0.79 25195 

weighted avg 1.00 1.00 1.00 25195 
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Table 67: MLP on the split binary training set 

 precision recall f1-score support 

abnormal 1.00 1.00 1.00 46822 

normal 1.00 1.00 1.00 53956 

     
accuracy   1.00 100778 

macro avg 1.00 1.00 1.00 100778 

weighted avg 1.00 1.00 1.00 100778 

 

Table 68: MLP on the split binary test set (validation) 

 precision recall f1-score support 

abnormal 1.00 1.00 1.00 11703 

normal 1.00 1.00 1.00 13492 

     
accuracy   1.00 25195 

macro avg 1.00 1.00 1.00 25195 

weighted avg 1.00 1.00 1.00 25195 

 

Table 69: MLP on the split 4-class training set 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 36759 

Probe 1.00 1.00 1.00 9308 

R2L 0.96 0.94 0.95 793 

U2R 0.86 0.91 0.89 35 

normal 1.00 1.00 1.00 53883 

     
accuracy   1.00 100778 

macro 0.96 0.97 0.97 100778 

weighted avg 1.00 1.00 1.00 100778 

 

Table 70: MLP on the split 4-class test set (validation) 

 precision recall f1-score support 

DoS 1.00 1.00 1.00 9165 

Probe 0.99 0.99 0.99 2338 

R2L 0.94 0.96 0.95 211 

U2R 0.40 1.00 0.57 6 

normal 1.00 1.00 1.00 13475 

     
accuracy   1.00 25195 

macro avg 0.87 0.99 0.90 25195 

weighted avg 1.00 1.00 1.00 25195 
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