Relevant research (2018-2022)
■
[1]
J. J. Estévez-Pereira, D. Fernández, and F. J. Novoa, “Network Anomaly Detection Using Machine
Learning Techniques,” Aug. 2020, p. 8. doi: 10.3390/proceedings2020054008 (n.11)
■
[2]
O. Jamal Ibrahim et al., “Network intrusion detection: a comparative study of four classifiers
using the NSL-KDD and KDD’99 datasets,” J. Phys, p. 12043, 2022, doi: 10.1088/1742-
6596/2161/1/012043. (n.13)
■
[3]
S. Rawat, A. Srinivasan, V. Ravi, and U. Ghosh, “Intrusion detection systems using classical
machine learning techniques vs integrated unsupervised feature learning and deep neural
network,” Internet Technology Letters, vol. 5, no. 1, Jan. 2022, doi: 10.1002/itl2.232. (n.9)
■
[4]
T. Su, H. Sun, J. Zhu, S. Wang, and Y. Li, “BAT: Deep Learning Methods on Network Intrusion
Detection Using NSL-KDD Dataset,” IEEE Access, vol. 8, pp. 29575–29585, 2020, doi:
10.1109/ACCESS.2020.2972627. (n.36)
■
[5]
S. Gurung, M. K. Ghose, and A. Subedi, “Deep Learning Approach on Network Intrusion Detection
System using NSL-KDD Dataset,” Computer Network and Information Security, vol. 3, pp. 8–14,
2019, doi: 10.5815/ijcnis.2019.03.02. (n.12)
■
[6]
S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,”
IEEE Access, vol. 6, pp. 48231–48246, Aug. 2018, doi: 10.1109/ACCESS.2018.2863036. (n.35)
34