
 

http://arch.icte.uowm.gr 

Transcript of Keynote Speech 
Recorded by Dr. Minas Dasygenis 
Transcript by Antonios Ventouris 
Edited by Dr. Minas Dasygenis 

http://arch.icte.uowm.gr 
 
 
http://pci2015.teiath.gr/keynote-speakers/ 

19th Panhellenic Conference on Informatics 
1-3 October 2015 
 

 

Keynote Speech 2: “Fifty years of evolution in virtualization 

technologies: From the first IBM machines to the modern 

hyperconverged infrastructures” 
Prof. Nectarios Koziris, National Technical University of Athens 

Abstract 

The evolution of virtualization is an exciting history of enabling technologies that have offered the ability to organize 

and utilize the hardw are resources more eff iciently. We w ill start from the origins of the f irst IBM machines back in 

1960’s, w here the notion of virtualization w as originally introduced to partition the hardw are resources more 

efficiently. This w as w ell before the onset of the majority of the operating systems in the early 1970’s, w hich w ere 

initially introduced as a software alternative to partition and expose hardw are resources to multiple users. In the late 

1980’s and 1990’s the software hypervisors allow ed the multiplexing of PC hardw are and enabled the use of virtual 

machines, w hich in the 2000’s became a commodity that needed to be eff iciently orchestrated and provisioned in 

bulk. The IaaS cloud era had arrived, bringing more interesting challenges for the dynamic, thin provisioning of 

hardw are and softw are resources to applications. Now adays, w e are living in the times of “softw are  defined 

everything”.  We have hyper-convergence in all our datacenter infrastructures, w here all compute, netw ork and 

storage resources are controlled by softw are. The talk w ill present this exciting long technology journey that started 

more than 50 years ago and still continues, alw ays driven by the notion of virtualizing expensive hardware resources 

to multiple users. 

  

http://arch.icte.uowm.gr/
http://pci2015.teiath.gr/keynote-speakers/


 

http://arch.icte.uowm.gr 

Good afternoon to everybody. We all thank you very much for the introduction and for the 

invitation. Thank you very much. It’s a great honor and privilege to be here in the opening of 

the Pan-Hellenic Conference of Informatics. Thank you very much the organizers for giving 

me the opportunity to present my vision and, first of all, the history of virtualization and my 

vision (***) and to the younger ones in the audience, I would like to say that we have to 

know very well the past in order to plan for the future. So it’s very educative to follow the 

slides. Although there are many slides, as Mr. Karanikolas said, but I will try to focus on the 

most important things. 

 I was impressed, let me say, too much impressed, I was impressed by the numbers, the 

people, the organization and, having followed the PCI conference from the early years, I 

must say that it is all these little details that sum up and make the conference a successful 

one and please allow me to express my gratitude and my congratulations to all the 

organizers because it’s a lot work and from the little greeting details of the map and the 

places to go around and the schedule and keeping the time, it’s all very well organized and I 
hope that everything goes well up to the end. Can you see all the windows? I hope so. Okay.  

So before starting this long journey to the… not so long, it’s 50 years old, but for the young 

ones, it may seem to come from the ancient times, let me say a personal story first. I feel 

old, because, 20 years before, in my very early years as a young researcher, okay, I’m still 

young, I had a publication, presentation in a similar event, in the fi fth Pan-Hellenic 

Conference of Informatics. This was done in 1995. It was the fifth Pan-Hellenic conference of 

informatics. I think that it was not called such way, it was called the MP conference, Yanni, 

correct me if I’m wrong, but okay it was then that it matured and it became the Pan-Hellenic 

Conference of Informatics. And I tried to find my path, my piece for the old presentation and 

these were the paper and the slides which were in transparences and not on a (***) 

computer. We had not projector. So if we have to remember two things from my talk, we 

have to remember two terms. The first one is “multiplexing”, πολυπλεξία as we say in Greek, 

and the second one is “abstraction”, αφαίρεση. So it’s the only two Greek words I had in my 

slides, so for the non-Greek ones, don’t be frightened, the rest of the talk and the rest of the 

slides are in English. So these two words, multiplexing and abstraction, are very important in 

all domains of science and, of course, in our science. And I will try to persuade you that 

abstraction and multiplexing led us to virtualization and led us to all this fancy stuff we have 

with the clouds and with (***) where I will end my talk. So let us go a century back, in 1919, 

where the American telephone and telegraph company, AT&T as we know it, was trying to 

convince the people to use the telephones and they were bringing a very special technology 

there, a technology that could allow up to five people to talk together one-to-one. Amazing. 

Five people to talk together through the same circuit, through the same call. And how AT&T 

do this? It would do this through the well-known time-division multiplexing. In telecoms, we 

had this notion of multiplexing for a hundred years now. So AT&T was advertising 

multiplexing in a way to allow many people for currently use the same medium, the same 

access access medium and share themselves as they were alone. Where else do we have 

multiplexing apart from our science? We have in the transport area. We know the big 

highways will have a lot of lanes, high speed lanes, low speed lanes, we all are multiplexed 

our cars in the lanes, and we feel that we are alone in the road, not so alone, because there 



 

http://arch.icte.uowm.gr 

are the traffic lights, there are signs, there are policemen, but okay we are all multiplexed on 

the same street, on the same highway and we try to be served by the same medium, which 

is the highway.  

So in the area of telecoms, the time-division multiplexing was the 101 of 

telecommunications and the public switched telephone network works this way. They try to 

divide the time in slots and they allocate slots to different users. The second term that I 

asked you to remember is the term “abstraction”. The term “abstraction” is not so clear as 

the term “sales”. It’s abstract. It means that I can leave omitted details and take the 
important stuff and focus on the important stuff.  

So in our area, if we have an instruction X that wants… Sorry, if we have instruction X that 

wants to map to instruction Y, instead of going the straight line, we have direct mapping 

between X and Y, we have an indirect mapping between translation to X1 and then ABC and 

then Y1 up to Y, which means that we can have as many as we like in the intermediate form 

of translating things, but the end goal is reaching the Y format. Okay, it seems abstract but 

we will see how we used it with virtualization. Virtualization in fact is abstraction. It means 

translating the instruction to something intermediate, an intermediate format, intermediate 

binary format so we have a virtual machine instead of the real machine. So I tried to write 

the timeline of evolution in virtualization and I would say that we had a lot of activity in the 

‘60s whereas we didn’t have any activity in the ‘80s and in the ‘90s. And I will try to explain 

why for my own (***). And why we are so hot in the era of 2010 and 2020 as we proceed 

now. So the first years the advent of hardware virtualization was done practically in 1964, 

which is a very old machine. I even hasn’t seen it in front of me, in a museum only (***) in 

Silicon Valley outside San Francisco. There is a very good museum there, a computer history 

museum, where they have (bad audio)  

So in 1964, the IBM announced a very big computer, 360, which aimed to address the needs 

of the scientists and the researchers which at these times they were just submitting jobs in 

their program. There was only one user at a time to these machines. So they were striving to 

find some hours to use the machine and the people were striving to… were waiting to get 

(***) because the machine was working (***). So this means that only one user could use 

the machine and he had to wait up to the end so the next user could come. Although it is a 

very naïve way of computing, over one thousand machines were sold in the first 30 days, 

which showed how thirsty people were for computing power. So the people at this time 

were very thirsty for computing power, but there were two different approaches. The first 

approach was by IBM who was trying to make a medium that would serve all the people and 

have a portable way of moving the programs from one 360 to another 360, even with 

different architectural characteristics but with the same batch mode, even faster than 

before.  

And the same approach came from MIT from work, sending out work by Professor Corbato 

(***) I will go to this slide in a while (***) …they were working in a time-sharing operating 

system. (***) …and they were trying to make an operating system as they were calling that 

would time, that would beam the timeshare between users. The objective of MIT was to 

have the proper project, called (***), so that they make users to concurrently use the same 

computer and believe that the computer is owns… they own the computer. So the first way 

of doing this was a timesharing system like the one Corbato  was… Corbato, as we will see, 

was working with an IBM machine. But the IBM people had a different perspective on this 

and the people from New York and the IBM headquarters addressed the bid of MIT not with 



 

http://arch.icte.uowm.gr 

a timesharing system as the MIT worked but with a different system that was faster in terms 

of batch processing. So IBM responded with a bad computer in this speed, the speed was 

successful for GE and laps. And what we know as UNIX and his answers (***) was the 

operating system that MIT started and this was the operating system that succeeded in this 

speed. So we have a failure for IBM at this particular bid and, as we all know, very good 

things start with failures. So IBM started using the beam and then went and (***) for a 

similar bid for another timesharing system, then IBM took the work of Professor Corbato 

and the group that was in cables near MIT and they addressed, they created the first 

virtualised machine, which is the CP-40. CP40 was not a commercial machine. CP-65 was a 

commercial machine. And why we call it CP? Because it had a control program that 

controlled the hardware and could expose the hardware to many users allocating different 

portions of a machine as different virtual machines. So we had the control program, the 

ancestor hypervisor, and we had the operating system which was a CP user operating 

system but nevertheless it was an operating system, CMS, so we had a machine with a 
control program and then CMS.  

In the slide, you can see the original book, the seminal book of MultiCS. MultiCS was the 

operating system that the project MAC was doing and it was its spine. This TSS, timesharing 

system, was the answers of MultiCS and then MultiCS was the answers of (***) we see in 

the next slide. So I just put this slide to show to you that an industrial vendor, IBM very very 

big at this time, they were proposing something different, but MIT university in their labs, 

another research centre, worked something else. In their labs at MIT were using the 

technology that was done in-house, in MIT, from professor Corbato and his team with an 

IBM machine. So it’s very important and I take the opportunity to say that it’s very important 

that, if there are any guys from the industry, it’s very important to have a close collaboration 

with the industry, and this example here shows us that IBM lost a bid, but could follow the 

next one and create a virtualized hardware CPCMS because they have a very good 

collaboration and a team of people collaborating with MIT inside MIT. So it’s very important 

that we have a good collaboration between the industry and academia, and we have 

numerous examples in our science, and this example is very vivid. It shows what (***). So in 

the 1960s, in the late 1960s, we had two things to fight each other. Batch processing versus 

timesharing. So the people that they were pro the operating system, they will say that we 

will just need a timesharing system, and the IBMers, the people that come from the big 
hardware companies, they would say we want batch processing.  

The people that they were proposing a virtualization, they would propose a virtualization for 

things like isolation, because, if we are many users and we use the same… each one of us has 

its own VM, we are isolated so, whenever I’m doing something wrong, I don’t spoil, I don’t 

block, I don’t install the (***) of the others, whereas, in operating system, I can block, I can 

break the whole system by doing a malicious code. The people that were pro virtual 

machines, they were arguing for ease of system programming, because, with a virtual 

machine to expose a hardware to the programming, so the system programming can 

develop very good work with the control of the hardware, even if it is virtualized, and the 

portability of the code (***). So things were maturing and, in 1974, there was a seminal 

paper by Popek and Goldberg that was describing the model of hardware and the VMM, as 

we see, the virtual machine monitor, a hypervisor (***), which is a piece of software that 

controls the hardware, and the VMs that interact only with the VMM, interact only with a 

hypervisor, so we can have plenty of VMs that talk only with a hypervisor, and the 

hypervisor controls the hardware and the control program that IBM initially, originally 



 

http://arch.icte.uowm.gr 

produced. And the machines that we all know was the CP-67, the IBM CP-67, it’s a well-

known portable (***), we see the first virtualized machine in a CP-67, and, then, the 

machine 370 was the next machine. So this seminal paper had two types of hypervisors as 

we know them. The type 1 hypervisor which is the one we say the bare-metal hypervisor 

means a hypervisor that runs on top of the hardware, controls all the hardware and exposes 

the hardware or abstracts the hardware to many virtual machines to many operating 
systems (***) operating systems.  

And, on the other hand, we have the type 2 VMM, the type 2 hypervisor, where we have the 

hardware, we have a time operating system that runs together with the hypervisor which is 

for the host operating system, and the guest operating system runs on top of the hypervisor. 

For the younger ones in the audience, you can see that the things that they were said in the 

1974 are the things that we have now. So we can say we have not so much, because the 

most of the things were said 40 years before. The modern hypervisors that we have, I’m sure 

that you all know VMware work, Oracle Xen Virtual Machine’s work, XenServer, are  type 1 

hypervisors, and type 2 hypervisors were VirtualBox and VMware Workstation. So the 

seminal paper of 1974 introduced the two types of hypervisors, bare-metal ones or hosted 

ones. Before somebody can ask me, what can we say that KVM will launch. KVM, as we 

know, is a kernel module Linux host operating system, so it can be considered like type 1 
hypervisor.  

So ending up the IBM story, things matured in the 1979, this machine was capable of hosting 

many many VMs through a hypervisor which is called control program there, the control 

program controls the hardware, and we have several operating systems here , CMS was an 

operating system, a CP using operating system at this time. We have DOS, (***) another 

VS1, another operating system. So, this machine was a virtualized hardware machine well 

sold back in late 1970s to allow concurrent execution of many operating systems where 

many users have their own machine each one of them and they would test develop etc. So 

the one thread that was led by IBM okay had been influenced by time shared systems and 

what Corbato in MIT was doing, follow the path of hardware virtualization of splitting the 
hardware into resources and allocating resources to different virtual machines.  

The other path that we know mostly is the path of the Unix model, the operating system 

that was matured in the 1970s and with the timeshare, the hardware, the computer 

resources to many users, as we know. It’s a difficult operating system. We have a team 

process and we have many users. Each of them they can run their own codes but all of us 

have (***) to the same kernel, and this may be bad in terms of isolation. But it’s very good in 

terms of taking, of exploiting all the capabilities dynamically of the hardware. So the Unix 

timeline in the ‘70s was this one. It started in 1969 and we all know the evolution then. It’s 

important to understand that they were two different perspectives. Timesharing the 

hardware or splitting in the hardware and dividing it to virtual machines or coexisting both. 

And history showed us that we have to coexist both. So let me proceed with the 1980s and 

the advent of the personal computer.  

We all know that IBM in 1981 opened the architecture, so anybody could make referrals 

(***) etc. that could interface with the personal computer. This open architecture create fire 

to a whole ecosystem of operating systems. And it was very important because , ten years 

later, we ended up with many many different operating systems. So in the ‘60s, we had the 

model of a main frame which was very expensive and the problem was how to share it to 

many users. But, in the ‘80s, there not so many many frames, and each one of us had a 



 

http://arch.icte.uowm.gr 

personal computer. So initially, the need for virtual machines was not so big. That’s why we 

couldn’t say that the progress in virtual machines was not done in the ‘80s. Although IBM 

was selling products that were virtualized in terms of hardware in the ‘80s and the ‘90s and 

so forth. But, the problem is that the personal computer gave us a lot of computation, 

computing power that we had in our offices, and the focus was on doing a lot of operating 

systems. So VM study became (***), the operating systems were multitasking and we had 

no serious need for VMs. The problem is that things go around. Opening the PC architecture, 

having a lot of PCs, writing a lot of codes, brought the need for many, for different operating 

systems. And we had an abundance of operating systems and we reached at a point that 

these operating systems should coexist in the same house. That’s where the need for 
virtualization came back again.  

So in the ‘90s, in the late ‘90s, we had too many types of operating systems , desktop ones. In 

the 2000, we have the mobile ones, too many flavours (***), too many applications, and 

there came the need to host them together into the same house. So this is a source, this is a 

comic that says that, in the ‘90s, we have three operating systems in our house, now we 

have four and then the rest is comic. But it shows that we have a lot of operating systems 

and we have the need to coexist together. At the same time, where we have this boom in 

operating systems and the need for doing hypervisors for the PC, some people were 

improving things in the programming language industry. And it’s true that the CNC++ were 

not very easy in terms of porting them to a different machine. So in the… there was a (***) 

in some microsystems, which was (***) and, then, in 1994, JAVA, which came out of a C++ 

project they had inside Sun and they were trying to make things easier for the software 

engineer to have programs that were portable and could run to different machines. So I’m 

sure that you all know the JAVA model which was pioneering at these times, then many 

other language followed, was the idea of a language virtual machine, which says that we 

have a source code in JAVA, we take it out with a JAVA profiler and we get a bytecode and, 

then, this bytecode runs on any JAVA virtual machine. So we can have different operating 

systems as long as they have a JVM, as long as they have a JAVA virtual machine, they can 

run our bytecode.  

And of course, in order to improve things, the JVM (***) just in time compiler to compile 

dynamically the instructions here and run more efficiently in the hardware lab. So what did 

the model say? We have an abstraction again, we have (***) abstraction, that’s why we 

have to remember the word “abstraction”, we have the source code which is compiled in an 

intermediate form named the JAVA bytecode, and, then, the bytecode can run (***) on any 

hardware as long as we have the virtual machine. But this time it’s  a language virtual 

machine, not hardware virtual machine. So virtualization came already to the language 

domain, (***) application domain. For the people that they are aware of a just in time 

compiler, a just in time compiler is just a way of (***) by compiling the bytecode to the 

target architecture. So we have virtualization on the hardware level, we have virtualization 

on the language level, but it’s still not where it’s covering virtualization in all areas. There  

was a seminar that a magazine, a computer magazine had in 2004, a special issue for 

virtualization technologies. It was explaining why we need virtualization. Because, in terms 

isolation, nothing harm, nothing bad I do should influence the VM of the others. In terms of 

movability, I can take my VM anywhere, I can run in another hardware and I can migrate the 

whole system and all this fancy stuff. So a modern system looks like this. We have the 

hardware, we have the hypervisor and we have many (***) operating systems with our 

application. And we can take this VM and we can put it in another machine. So the (***), 



 

http://arch.icte.uowm.gr 

opening the architecture of the PC and bringing many operating systems led to the boom in 

the hypervisor area. So in the 2000, we had… 1998 VMware, we had the (***) virtual PCs 

and VirtualBox, all these hypervisors that run natively in a host OS on top of an x86 machine.  

We can see the different characteristics here. Some of them are full virtualized, some of 

them are para-virtualized. I’m about to explain a bit later what’s the difference between 

them. So there is a (***) system of hypervisors for the common hardware we have, the 

interpart. So these are the types of virtualization in terms of hardware, hardware 

virtualization, we have today. The machine there (***) we were explaining. We have a lot of 

operating systems supported altogether. And the old one, the VM/370 was the original 

machine with hypervisor and, now, we have the VMware, ESX, Xen etc. The operating 

system level it’s another technical we haven’t discussed, it was not so well developed in the 

‘80s, but it came back now. I’m not sure who of you have heard Solaris zones or freebsd jails. 

Jails were the answers (***) container (***). So, we have one way of virtualizing a whole 

hardware and hosting the operating system there and our applications. We have the linking 

to have on the same operating system different containers that pack only the necessary stuff 

and our application. So this is the container of the operating system level virtualization we 

have now today, and, of course, the language which is the well-known JAVA platform we 

have in our laptops today. So to sum up, it depends on the layer of instruction that we want 

to have. So we have the instruction, separate architecture abstraction, which is the 

hardware abstraction, so we have hardware virtualization.  

If we go to the application (***) interface, we have the operating system virtualization which 

means different containers. You can see it in the blue light there. And if we go to the 

application, domain and language etc., then go to the application programming which is the 

top. So we have three levels (***) which level is more suitable for our case or we can have 

all of them together. And this is the situation today. Some stuff regarding the hardware 

virtualization, I don’t know how much time do I have.  Do I have time? Do I have ten 

minutes? Okay. So these are the three types of virtualization, the full, the partial and para-

virtualization, I’m not going to detail for them. I’m sure that you can have slides and you can 

find more details elsewhere. The OS-level virtualization which, as I said, is the container stuff 

we are hearing today, we are running on top of the same OS. We have multiple isolated but 

user space to our containers. Some will say it is secure enough. So how much can support 

(***) on different kind of containers onto the same operating system. Again, I can have 

different operating systems on the same hardware with hardware virtualization. I can have 

different applications, different containers, containerized applications with my data on top 

of the same operating system. This is very convenient, but how secure is this? And okay, it is 

secure, but you understand that, as long as you go on top of the operating system, or go to 

the user space, things become a little more tricky, a little more not isolated, a little more 

insecure, because these containers have access to the same kernel. And the big issue is what 

about the data of those containers and how we can have a container move from one host to 

another. And of course, at a very high level, at the level that people in language are working, 

we can have a language virtual machine, we have the abstraction machine definiti on, we 

have an intermediate code, a bytecode, we translate the source code into a bytecode and 

then, as long as this bytecode finds a VM to run, we can run it in any machine, so we have 

portability of the code. We’re starting with JAVA (***), but we have now many scripting 

languages with every virtual machine, Ruby, Python (***) and we use there this kind of just 

in time compilers and machines for them. So let me sum up how we are now. We have a 

plethora of operating systems, different operating systems for different needs for the same 



 

http://arch.icte.uowm.gr 

hardware, x86 is the dominant hardware, we have a diversity of workloads, that’s the 

situation we have today, and, since we have a diversity of workloads, we have to find a way 

to load them rapidly and to port them from one container to the other. When I say 
container, I mean from one machine to the other.  

Now, hypervisors is a mature technology, hardware hypervisors (***) are very mature. And 

the problem is that, with this kind of multiplexing, this kind of exploiting the real hardware in 

many virtual resources, I mean, I have a machine with six doors or eight doors and I can 

virtualize it, I can split it into tens of machines, so I can now have tens or thousands of VMs. I 

mean, I can have a rack of servers and the rack of servers can contain thousands of VMs. So 

how can I manage thousands of virtual machines which have their own OS? So there comes 

the cloud. So the cloud is a way to orchestrate all these virtual machines that we have in a 

very convenient way, taking the hustle out of the user and putting it into the VMs. I’m going 

to speak about the IaaS, the Infrastructure as a Service. We can call them simply software 

stacks to manage our VMs, our hardware VMs. We have the well -known Amazon cloud 

which is based on a closed source solution. And we have open-source ones, like the 

OpenStack, the OpenNebula, the CloudStack and the Synnefo, which was a software stack 

that we did in Greece while I was with the Greek Research and Education Network. The idea 

in an IaaS cloud is that the user can (***) a number of VMs out of different flavours, and you 

will see that the cloud, an IaaS cloud, typically has hundreds of different flavours, with 

different characteristics, different memory size, different number of (***), different number 
of discs, of size of disc, kind of disc etc.  

Okay. So let me say a few words about the original work we had done and for the Synnefo 

software and the Okeanos cloud, which is one of the largest, allow me to say, still the largest 

public cloud in Europe. It’s a cloud that orchestrates virtual machines of the end users, like 

you. The (***) was written in the late 2010, 15 code experts. While I was preparing my talk 

for today, I was revisiting some historical notes from some people in the ‘60s, and they were 

saying that any group beyond 12 programmers cannot do substantial work. All the big 

projects come with less than 12 programmers. One is very few, more than 12 is very big. 

Take care. It doesn’t mean than any group of 12 people can create a software like UNIX. So 

even if Unix was originated by a hundred people, it doesn’t mean that any hundred people 

can create the Unix again. So, I’m not claiming that Okeanos is the perfect software, but I’m 

very proud of the work we did there. And the numbers were really astonishing. You can see 

thousands, thousands of users, thousands of VMs, hundreds of thousands of spawning and 

respawning and resources, which means that we have built an orchestrator that is really 

unbreakable and can bring support to many many many virtual machines. Why we did the 

Okeanos? Because, at this time, there were no big (***) and the OpenStack, which is well-

known, didn’t work, still doesn’t work, but the idea it was that we would control our stack. 

For the last three years up to mid-October 2014, we had very very intense work done there 

and software now is very stable. And I know that some very good friends (***) in the 

infrastructure session will share some details and some applications and services that (***) 

on top of the Okeanos cloud. So Synnefo is the orchestrator of managing all these VMs. And 

seeing that it’s open source and we have very good collaboration with Google, with their 

orchestrator, Ganeti, we are contributing still with Ganeti and Google. The idea was that we 

had virtual machines, any kind of virtual machines, we put scale up to hundreds of 

thousands, tens of thousands and hundreds of thousands, by adding more more and more 

quick. And we could start a VM in three clicks. Okay, these are some details which show 

technically why the approach that we followed (***) the abstraction approach was very 



 

http://arch.icte.uowm.gr 

good and why it leads to the hyper-convergence I’m going to speak in the last ten minutes. 

Okay. So the approach we followed was a level approach. The resources for the users are 

these: compute, network, storage and firewall, and these are for the orchestrator of the 

virtual machines, the virtual internet, the virtual disc and the virtual files. So with these 

Legos, if we put them together in a way that makes sense, we can have this one. So this is 

the idea originally the idea of the cloud. We were thinking of very simple bricks that could 

bring any IT infrastructure, the most complicated one, like this one I’ve showed here, 3P 
architecture made of these virtual bricks, virtual resources coming from the Okeanos cloud.  

So we have compute, VMs, we have networks, we have discs and we have firewall , so we 

can bid an arbitrary morphology of IT based on these Lego stack. And the difficult part now 

is, if there is a failure in a physical machine that costs this here, what will happen with the 

whole IT infrastructure? So some of you I know that you know the… you have seen the UI. So 

the problem is that, from the user perspective, I don’t want any failures, I want to scale it 

out, I want to grow, and the problem is that, in order to address all these needs for the 

users, I have a fragmentation of things, a fragmentation of infrastructure. Many vendors 

come in my data centre proposing different solutions and I have all these different solutions 

to glue them together. So our data centre became a messy data centre, a data centre where 

we had different goods from different vendors. And each vendor were proposing that his 

management software was doing the right stuff and the other were impractical. So the idea 

is that we have users that they needed available VMs, isolated, with (***). This time I was 

asking for VMs that was relinquishing them, from the one hand. And from the other hand, I 

had an HP, an IBM, a Dell server, I had an (***) net up at storage area. So I have two 

different things to come together, so my server, a fat server, with many (***), virtualized is 

like a big vessel, a big ship, with a lot of workload on top. Imagine that you are in the middle 

of the ocean and that this vessel breaks. What will happen to your containers? And this is 

the idea of containers.  

Okay, another vessel will come and you have to migrate all your load from this vessel to the 

new one. So this happens with one vessel with all this workload on top of it. And do the 

analogy, you have a workload in your server and you have to migrate because a fan broke, 

the power supply didn’t work, so you have to migrate live, port the VMs from one machine 

to another. And your data centre is like this. Your data centre has a lot of workload, different 

workloads, each of these containers I’m sure it’s the best, it’s the telephone of the user that 

says my workload is the best one and I want to take care of it, it’s the best of everybody. So, 

you have a way to manage all these workloads horizontally and give to any user the ability to 

use any of these frames, any of these vessels, because everybody is important. So the 

problem is much more difficult, much more complicated than the real world, because, in the 

real world, I’m sure that all these areas are split vertically and (***) and share between 
different logistic companies.  

But, in our world, any container can use any crane to get this job done, and any vessel could 

get its… to be hosted. Okay. So we have to call somewhere e lse, all this messy stuff, and the 

solution for all this messy stuff. And the solution comes from the vendor’s world is called 

convergence. In the last… for the last five years, vendors were coming at GRnet, at other 

fora and discussions we had, they were proposing their convergence solution. And the word 

“convergence” is a very very (***) Convergence means that we glue everything together. So 

I keep saying this stuff that, if you are a blacksmith, you see everything as nails and hammer. 

So if you are a hardware vendor, you think that the solution could be a big rack like this. So 



 

http://arch.icte.uowm.gr 

the hardware vendors brought the word “converged architecture” which means that we 

have storage, computing power, cooling, network, and the management software all 

bundled together in a stuff like this.  

So Cisco comes… I invited Cisco here. Cisco comes, IBM comes, and sells you a unified 

computing infrastructure, a converged one, which says that I can host tens of thousands of 

VMs and hundreds of terrabytes and tetrabytes inside your cloud. And this is your cloud. 

Okay. If I ask you if something happens to this rack? If the kind lady that does the housework 

and cleans the data centre pulls out a plug? If the fan breaks? What will happen to all these 

tens of thousands of VMs inside this cabinet? And the idea is, okay, you can buy a second 

one, so you can migrate between two of them. And I’m saying, “okay, why I have to log into 

you”, because you have to buy from the same vendor, and they say “don’t worry, I’m 

compatible with the others, but the others have to try more to be compatible with me ”. So 

the vendor perspective on how the mess of data centre can be arranged is the converged 

infrastructures. And the market is real big. So the idea of converging everything to a single 

chassis, a single cabinet where you put everything together and you virtualize all the layers, 

is very attractive, but does not work. And does not work because the data centre needs to 

scale out, needs to scale to infinity all layers, to scale to infinity.  

So the reality in the data centre is that we have infrastructure, we have servers, we have 

storage, we have network, which are independently virtualized, so they are multiplied, the 

idea of multiplexing as I said. So we multiply the resources, we have tens of thousands of 

network forts, tens of thousands of discs, tens of thousands of VMs, but we have somehow 

to glue them together, to orchestrate them together. So the idea we followed in our work at 

the Synnefo software, but this is being followed already by all major data centre operators 

that they are hosting IaaS clouds, is that we try horizontally to glue together vertical 

partition things. I mean, a typical server would have a storage, would have not a virtualized 

server, would have this type of stuff, vertically access to storage from each node. When it’s 

virtualized, we have a hypervisor, we have the guest VMs, we have the  storage here, but we 

have to make a glue. So all this storage is being seen as a unified one. I’m skipping some 
details to show you what we did.  

The Archipelago approach, the Archipelago was the storage that we developed, originally 

developed inside the Synnefo, and this kind of software defined storage as we say, 

decouples the logic of the actual physical storage. So we built a distinguished storage 

system. So this distinguished storage system decouples the storage, the sources of storage 

backends. So (***) means you can buy discs from the Stournara street, and the Stournara 

street is the retailers. You can buy any disc you want. You just put a lot of servers with a lot 

of discs. And you glue them together with a software. And whenever a new VM wants 

another disc or when a new VM wants to make a snapshot, it takes blocks, obviously it’s 

okay, obviously it’s out of this pool. So the idea is that files, user files, images, I mean, 

templates for creating VMs, volumes which are the discs that the VMs have, al l are 

considered resources. Snapshots which are I press a button and I want to keep a still image 

of my VM. So this is the architecture of a storage defined… of a software defined storage. 

The architecture says that the backend, okay, it cannot be seen very good here, it’s just a 

bunch of loads, a bunch of objects, sorry. And then, the user has an image file, he closed it to 

a disc, and the disc can start a VM and all these are maps to the same substrate. So the idea 

of a storage defined… of a software defined storage is that we had a substrate of objects, in 

our case it was the Ceph file system and the RADOS object store, and, on top of it, we 



 

http://arch.icte.uowm.gr 

orchestrate different lead based on the needs of the users. So the top virtually is like this. 

We have physical hosts with VMs, we have our secret software, and we glue together 

storage that comes from a retailer. And this can scale out to infinity. The experience we have 

with this was that we could allow… we could tolerate any kind of (***) So it means that 

somebody would like to take out a container from the server and change the track, and the 

VMs were just migrated to another track or they were just migrating to another data centre. 

We could even migrate VMs, workloads, from one data centre to another. And okay, you can 

ask me what happened with the data. I’m very happy to answer to you that the data could 

be also synchronized (***), but this is another story.  

So the idea is that the only way to scale to infinity is to have software defined data centre. It 

means software controlling all the hardware resources and decoupling the hardware, the 

virtualized hardware resources from the manager. The Synnefo software is there. It’s being 

used by several data centers in Europe and hardware installations in US and I’m sure that 

more details you can find in the infrastructure session. So the challenges we are having. How 

much time do I have? I don’t have time. See, it’s the typical answer I get always from the 

session centre. What are the challenges we are having? We had diverse workloads, every 

workload is important. Workloads come and go. We have to optimize scheduling. I’m sure 

you know schedulers that come into life now, the Mesos scheduler, the (***) etc., the 

Omega project from Google. We have to scale anything, cores, a number of cores, the size of 

memory, discs etc. I want… A user would say “I don’t want another disc, I want just my disc 

and double the number of blocks”. And how we control this stuff? How we control all  these 

resources? The software defined data centre. It means that we control the provisioning of all 

resources through software, that the resources will be (***), will be naïve. We take out all 

the management software, all the management goodies from the vendors and we put 

software. We control with our software the hardware resources and that’s it. So we can do 

all this kind of stuff which is very important for a data centre, believe me, with applications, 

snapshots, clones, theme provisioning, (***), synchronization, disaster recovery, you want 

the VM not to be destroyed, but you can take it and go to the other data centre which is a 

thousand kilometers away from here, this is what the Google does and the other data 

centers, out of commodity physical storage, out of commodity stuff. My kids love the 

(incomprehensible) story, so I have this comic. It seems that we have to forget the typical 

discs and we have to focus on the not flash, (***), the memories will become bigger and the 

discs will become bigger and will become based on solid state. So we have to forget the 

typical discs you know. And you see that the cost, this is the cost for a terabyte of a capacity 

disc and the cost for a terabyte of a flash disc, you see the point here. In the next year and 

the flash will become cheaper (***) So it’s very important. So all of our storage will be 

flashed. So I’m claiming and I’m concluding, I’m claiming that converging, hyper-converging 

means taking all the resources, gluing them together, controlling them with software, will 

bring at the storage domain the end of the storage arraying. They were no cases for storage 

arrays inside the data centers. Okay, they were big cases for big systems, for big companies 

like the banks, the banks are still in the era of (***), so it’s okay (***) the storage with 
magnetic discs.  

So to my understanding, the storage arrays are dead, software defined storage leads 

everything in the data centre but we storage hyper-converged ones. Cheap discs come 

together, virtualized and the blocks, everything for the VM. This is the ecosystem of a big 

companies that they are dominating the software defined storage and you can see that all of 

them are selling software apart from some that keep selling appliances, because it’s a 



 

http://arch.icte.uowm.gr 

psychological way, I’m purchasing the equipment, I have to see it, whereas, when I’m buying 

software, I don’t see it, so I cannot claim (***) used. By this I’m finishing, it’s very important 

to understand that we are living in an era of (***) We have virtualized everything, from 

machines to networks to discs. So all the resources in a data centre are being virtualized. We 

have to control. How we control in a unified way? With the software. Problem is that, when 

we asked a typical user, he says “buy another cabinet of discs, buy another array of discs”. 

So this quote by (***) reminds me what we are living nowadays. People are selling to us 

arrays, vertically converged, as they say, equipment but we need no (***), we need 

something else. We need a machine, we don’t need more horses. Thank you. 

- Thank you very much for this insightful and fascinating presentation. We could take one or 
two questions if you… Yes, (***) 

Question by Dr. Minas Dasygenis: 

- Thank you for you talk and I would like to congratulate you for the Okeanos project, which 

I’m one of the first adopters of this technology and, in fact, I was using, with my students, 

I’m teaching distributed systems, open MPI, and we were constructing big clusters of it and 

we were using in teaching parallelization techniques. And I would like to comment on a 

phrase that you said a couple of times. The scale to infinity. It seems that, even though 

software can support scaling, economics does not support scaling. And for this reason, the 

Okeanos project has been paused for new users, and only the old users like me and my 

previous students can use it. So one of the question is about Okeanos and do you think that , 

first of all, it will expand or, due to stringent economics in Greece, it will shut down as some 

things came to close down? Thank you very much. 

- Okay, I’m really delighted that you were one of the first adopters of Okeanos service  and 

that you enjoyed the service. I’m also using this for my courses and it’s a perfect way of 

organizing the course with hundreds of VMs for hundreds of students at one time. What the 

academics will say is that we design things, we are ambitious, we have the ambition to scale 

to infinity, as I said, but the problem is that the fact that Okeanos (***) now is not due to the 

software or not due to our design. It’s due to the bids, to the bureaucracy, to the way things 

work when you are living a big bid in Greece. And I would like to separate these two things, 

the software is very good, it needed insight and a lot of design in the previous years. But 

now it’s very mature and the fact that the users do not enjoy this type of stuff is that people 

at GRnet and, because I’m a member of the GRnet from last December, people at GRnet had 

their hands tied, they cannot buy the equipment. So at the end of the day, you need more 

servers, you need more storage, you need more discs. So I’m sure that they are planning and 

they are… at the moment, they have open bids and they will soon increase the physical 

resources because, in order to virtualize the resources, you need to have the physical ones 

first. As far as I know, they will put more iron to the data centre and increase the number of 

data centers. So you will have soon better news than the one you have in the last year. But 

the software was a very good example of how with the software we can control the 
hardware resources.  

- Thank you very much and I think this concludes our key note. 

- Thank you very much. 

- I’m sorry we have to end this. (***) in 3:30, so you have a short time for a coffee break. 


