University of Western Macedonia
FACULTY OF ENGINEERING
Department of Informatics & Telecommunications Engineering

Laboratory of Digital Systems and Computer Architecture

Secure Autonomous Cloud Brained
Humanoid Robot for Search and Rescue

missions in Hazardous Environments

Diploma Thesis

Georgios Angelopoulos

Supervisor : Dr. Minas Dasygenis

October 22, 2018

Kozani

Declaration of Authorship

AnAdve pntd 6tL, odppwva pe to apbpo 8 tou N. 1599/1986 xar tor dpbpoa
2,4,6 Top. 3 tov N. 1256/1982, n mapodoo AimAwpotixy Epyooio pe titho “Se-
cure Autonomous Cloud Brained Humanoid Robot for assisting rescuers in Haz-
ardous Environments” xafwg xaw oo Aextpovixd apyeior xoL Tnyolol XHOLXES TOU
ovartoyOnxoy N TpomomoLninxay oTa TAALOLOL VTG TNG EPYUTLOG KOL OVOPEQOVTOL
ONTWG HECO OTO XELUEVO TTOL GLYOJEVOLY, XaL N omolo €xel exmovnbel oto TuNuo
Mypyovixdy IIAnpopopixng xow TnAemixotvwyioy tou [lavemiotuiov Avtinng Moxed-
oviog, LTO TNV eTifAedn Tov péAovg Tov Tunuatog x. Mnva Acocvyévy amoteAe!
OTTOXAELGTLX A TTPOLOY TTPOOWTILXNG EQYATLOG XAl OEY TTPOGBAAAEL &b LOPPNG TTVEL-
OTLXA SIXOLWOUOTO TELTWY XL OEY (VoL TTPOLOY LEPLUNG V] OALXNG OVTLYPOUPNG, OL TTNYES
de mov ypnotpomotiinxay meptopilovtor otig BLBALOYPXPIXES AVOPOPES KAl LOVOY.
Toa onueio 6mov €xw ypnolpomonoeLl LO€eg, xeipevo, apyeio M / xaL TNYES AAAWY
OUYYQOQPEWY, OVOPEPOYTOL ELILAXPLTO OTO XELUEVO UE TNV XOTAAANAN TTOOATTOUTY
XOL N OYETLXN AVOPOPE TIEPLAAUPAVETOL GTO TUNUA TWY PLEALOYOAPLYWDY 0VOpPOR®Y
KE TANEY TEQLYPOPY). AToryopeletol v avtiypo®y], amobnxevon xal dLovour g
TOPOVOOG EQYATLOG, EE OAOXATIPOV N TUNUATOS 0TS, YLOL ELTTOPLXO o%0Tth. ETitpé-
TIETOL] VU TOTIWOT, ATTOOHELGY RO DLAVOUT] YLOL OXOTTO (L] XEPOOOKOTILYO, EXTTOLOEL -
TLUNG 1] EPELYNTLXNG PVONG, LTTO TNY TEODTOHES YO AVUPEPETAL 1 TINYY| TTPOEAELOTG
xol voo Statnpeitor to mopdy prvopo. Epwotiuoato mov a@opody Tt xeNom g
gpyaotiog Yo xEP300XOTUXO OXOTIO TPETEL Vo aTteLOVYOYTOL TTPOS TOV CLYYPUPEX.
Ov amodeLg xol To CUUTEQAOUATO TTOV TEPLEYOVTAL OE AVTO TO EYYOPOPO EXPEALOLY

TOV OUYYQPOPER XOL LOVO.

Copyright (C) T'epytog AyyeAdmovrog & Mnvég Aaocvyévng, 2018, Koldvn

Acknowledgments

I would like to thank my supervisor, Dr. Minas Dasygenis, Professor at the Uni-
versity of Western Macedonia, for the patient guidance, encouragement, and advice
he has provided throughout my time as his student. A very special gratitude goes out
to my close friends and fellow students for their support and friendship. For working
together and building the right mindset to achieve higher goals in life and science.
Finally, I must express my very profound gratitude to my parents for providing me
with unfailing support and continuous encouragement throughout my years of study
and through the process of writing this thesis. This accomplishment would not have

been possible without them. Thank you.

Abstract

Cloud robotics is a field of robotics that attempts to invoke cloud technologies
centered on the benefits of converged infrastructure and shared services for robotics.
When connected to the cloud, robots can benefit from the powerful computation,
storage, and communication resources of a modern data center in the cloud.

Nowadays there have been a few attempts that combine cloud with humanoid
robots but they haven’t been used as a service for emergency response in hazardous
environments. These cloud-based applications can get slow due to high latency
responses and can be hacked very easily.

This thesis proposes a novel, fast and secure system using a cloud brained hu-
manoid robot programmable to be able to autonomously move and detect lives in
emergency scenarios with the potential to communicate with the victim. Finally, to
explore the safety of our system, we performed an experiment where a penetration

tester tries to hijack our robot.

Keywords: Humanoid Robot, Cloud-Brained, Cloud Robotics, Human-Robot In-

teraction

Abstract in Greek

H popmotinn vépoug eivar €vag xAAD0G TNG POUTTOTLYNG TTOV ETTLXAAELTOL TEYVOAOY-
[EC LTTOAOYLOTLXOD GUYVEPOU [LE ETUXEVTOO TO TTAEOVEXTALOTO TNG OVYXALOYG VTTOOOL-
WV XL XOLVWY DTTNEECLWY YL TN POUTOTLXY. Oty cuvd€ovTaL oTo VEQPOCS, ToL POULTIOT
UToPOVY Vo eWPeANHoVY amtd TOug LoYLEOVS LTOAOYLOTES, amofnxevTiXoVs %ot
ETUXOLYWYLOXOVSG TTOPOLG EVOG GUYYPOVOU XEVTPOL JESOUEVWLY.

YNUePa €XOLY YLVEL LEPLUES TTPOOTEbELEG TTOL GLYBLALOVLY TO LTTOAOYLOTLXO VEPOG
UE TNV POUTOTLXY %ot Tow avbpwmoeldelc poumdt, oA dev €xovy ypnotpomoinbel
WG LTINEEGLN OVTLLETWTILOYNG EXTAXTWY TEQLOTATIXWY OE £TILXIVOLYX TTEPLPEAAOYTO.
AvTécg ot e@appoYég ToL PacilovTol aTNY CUYKEXPLLEYY] TEXVOAOYLOL LTTOPEL Vo Elvort
0PYES AOYW LYMATG *xtBLOTEPNONG TNV ETULXOLYWVIO XOL UTTOPOVY YO TIoPaBLGTOLY
TTOAD VX0

H ovyxexpLpévrn SimAopatixy epyaoion TROTEIVEL EVal VEO, YONYOPO O OLOPOAES
oV TN YENOLUOTTOLOYTOGS EVOL avHPWTTOELIES POUTIOT TTOL €YEL TTPOYPOUUXTLOTEL YLOL
VO UTTOP-EL YOI LETAXLVELTOL OVTOVOUD XL VO OWLYVEVEL (WEG OE GEVEPLO EXTOXTNG
OVAYXNG EVR EYEL TNV JLYATOTNTO. Vo ETLXOLVWVEL e To OVpo. TéAog, yior vo
OLEQEVYNCOVLE TNV ATPAAELO TOL GLATNUOTOG OGS, TTOOY LA TOTTOLOOULE EVOL TTELQOULOL

omov évoag doxtpaatyg dteiad-vorng mpoorabel vo TopafLéost To POUTOT LAG.

AéEeg xhedia: AvBpwmbépoppo poumdt, Ymoroytotnd Népog, Popmotinn tov
Yuwvépov, AAMnAeTtidpaon AvBpwTov-pounot

Contents

1 Introduction and Background
1.1 Introduction. e
1.1.1 Cloud Robotics oo
1.1.2 Robots in Hazardous environments
1.1.3 Humans and Robots Interaction
1.2 Background L e
1.3 Problem Description oo
1.4 Equipment e e
1.4.1 Humanoid Robot
1.4.2 Server e
1.5 The Following work structure
2 Background Theory
2.0 Tools e e
210 WInscpo e
212 Puttyo e
21.3 GNUnano.
2.2 Programming languageo
221 Python.
2.3 Website Development
231 HTML e
232 CSS. .. e
2.3.3 JavaScript e
23.4 PHP e
2.4 Socket Programming L oo o

2.4.1 Description

13
13
13
14
15
17
17
18
18
20
22

24
24
24
24
25
25
25
26
26
27
28
29
30
30

4

2.4.2 Sockets and Addresses

2.4.3 How Server Sockets Work
244 TCPSocketFlow,
2.4.5 TCP Communication on Python
2.5 Advanced Encryption Standard (AES)
2.5.1 Cryptography e
2.5.2 AES Algorithm o 00000
2.5.3 Security e
2.5.4 AESand Python 0. ...,
2.6 OpenCV e
2.6.1 Basics e
2.6.2 Haar-cascade Detection in OpenCV
2.7 Chapter Summary e

Implementation Details
3.1 System Architecture o oo oL
3.2 ProxiesonNao e
3.3 Motionon Nao e
3.3.1 Performance and Limitations
3.4 Obstacle Detection
3.4.1 Obstacle Detection using ultrasonic sensors
3.4.2 Obstacle Detection using Hands
3.5 Movement Functionson Nao
3.6 Photo Capturing from Nao
3.7 Audio Recording from Nao
3.7.1 Performances and Limitations.
3.8 Cloud Server e
3.8.1 Speech Recognition
3.9 Website e
3.10 Chapter Summary oo

Discussion

4.1 Nao and Hazardous Environments

39
39
39
42
42
43
43
45
46
o4
55
56
56
57
59
62

63
63

4.1.1
4.1.2
4.1.3

Robot’s design limitations
Hazardous environments

Nao on Hazardous environments v v v v v v v v v v

4.2 Security e

4.2.1
4.2.2

The experiment

Prevention e e e e e e

4.3 SWOT Analysis o i e

4.4 System Metrics Lo L e

4.5 Chapter Summary

5 Conclusion

s and Future Work

5.1 Conclusions o e e e e e e e e e e e
5.2 Results e e e e
5.3 Future Work e e

Appendices

A Cloud-Brained procedure

B Installation Manual

B.1 Nao
B.1.1
B.1.2

B.2 Server

......................................

NAOqi OS -user accounts

Accessing NAOoverssh

68
68
68

71

73

74

List of Figures

1.1 NAO version 5. (Image from Aldebaran’s documentation) 20
1.2 Geometry of the NAO. (Image from Aldebaran’s documentation) 21
1.3 Location of the Video Camera. (Image from Aldebaran’s documentation) 22

1.4 CPU Utilization. o e e e e e e e e e e 23

2.1 Programming languages. (Image from Aldebaran’s documentation) . . 26

2.2 TCPSocket Flow. i e 31
2.3 Encryption Process. oo 35
2.4 Haarfeatures. e 37
2.5 Face Detection on OpenCV. 38
3.1 System architecture. oo 40
3.2 Locomotion Control. 43
3.3 S0NATS. . . . v it e e e e e 44
3.4 Detecting obstacles using hands. 47
3.5 Moving Left. 48
3.6 Moving Right.. oo o 50
3.7 Turning Left. o 51
3.8 Turning Right. 0 0. 52
3.9 Turning Back. 0 o o o 593
3.10 Block Diagram. L e 57
341 Login Page.. oL e 59
3.12 Control Panel. o o 60
4.1 Score from Codacy. 67
5.1 The room we used for experiments. 70
5.2 66.7% answered that they felt safe when the robot came. 71

5.3 6.7% answered that the robot wasslow. 71

5.4 As shown from the answers this simulation was low stress and simple. 72

List of Tables

1.1 Characteristics of Functional Humanoids.
2.1 AES Structure. e e e e e
3.1 Locomotion. e e e e e e e e e e e

10

Listings

2.1 Example using Pythonon Nao. 26
2.2 HTML example. i 27
2.3 CSSexample. e 28
2.4 JavaScriptexample. oL L 29
2.5 PHPexample. e 29
2.6 Importing module socket. L oo o 32
2.7 Client program example. 0o 32
2.8 Server program example. L o o 33
2.9 Installation of PyCrypto. oL oo 35
2.10 AES Example. e 35
2.11 Loading XML classifiers. 37
2.12 Detecting Faces. e 37
3.1 Proxies. e 41
3.2 Method setFootSteps. oo oo 42
3.3 Obstacle-sonar Function. 44
3.4 Obstacle on the side Function. 45
3.5 Moving Forward function. 47
3.6 Moving Left function. o 0oL, 48
3.7 Moving Right function. o 0o 50
3.8 Turning Left function.0 . 51
3.9 Turning Right function. 52
3.10 Turning Back function. 54
3.11 Photo Capturing function. oL 54
3.12 Turning Back function. 0. 55
3.13 Processing Sound using Google Speech Recognition. 58
3.14 Inserting information using PHP. 61

11

A1
B.1
B.2
B.3
B.4
B.5

Cloud brained procedure. 74
Python installation part 1. 0. 83
Python installation part 2. o000 83
Python installation part 3. o 83
Python installation part 4. 83
PHP installation. 84

12

Chapter 1

Introduction and Background

1.1 Introduction

1.1.1 Cloud Robotics

In recent years, research in robotics has become one of the most popular research
fields in industry and academia, also, with the recent popularity of cloud computing
[1], there has been an interest in applying similar concepts to robotics and autonomous
systems. Cloud robotics [2] allows robots to take advantage of the rapid increase in
data transfer rates to offload tasks without hard real-time requirements. This is of
particular interest for mobile robots where onboard computation entails additional
power requirements which may reduce operating duration and constrain robot mo-
bility as well as increased costs. Cloud-Based robots have proved to have several
applications and advantages over the traditional networked based robots.

They have the ability to offload computation-intensive tasks to the cloud. The
robots only have to keep necessary sensors, actuators, and basic processing power to
enable real-time actions (e.g., real-time control). It extends the battery life, and the
robotic platform becomes lighter and less expensive with easier to maintain hardware.
The maintenance of software onboard with the robots also becomes simpler, with less
need for regular updates. As the cloud hardware can be upgraded independently
from the robotic network, the operational life and usefulness of the robotic network
can be easily extended.

The robots can gain information and knowledge to execute tasks through databases
in the cloud. They do not have to deal with the creation and maintenance of such

data.

13

The cloud provides a medium for robots to share information and learn new skills
and knowledge from each other. The cloud can host a database or library of skills or
behaviors that map to different task requirements and environmental complexities.

Several research groups have started to explore the use of cloud technologies in
robotic applications. For example, self-driving cars in Google are one type of cloud-
connected robot. The autonomous cars access data from Google Maps and images
stored in the cloud to recognize their surroundings. They also gather information
about road and traffic conditions and send that information back to the cloud. A
research group at Singapore’s ASORO laboratory has built a cloud computing in-
frastructure to generate 3-D models of environments, allowing robots to perform
simultaneous localization and mapping (SLAM) much faster than by relying on their
onboard computers [3]. At LAAS, Florent Lamiraux, Jean-Paul Laumond, et al. are
creating object databases for robots to simplify the planning of manipulation tasks
like opening a door. The idea is to develop a software framework where objects come
with a “user manual” for the robot to manipulate them. This manual would specity,
for example, the position from which the robot should manipulate the object. The
approach tries to break down the computational complexity of manipulation tasks
into simpler, decoupled parts: a simplified manipulation problem based on the ob-
ject’s “user manual,” and a whole-body motion generation by an inverse kinematics
solver, which the robot’s computer can solve in real time.

The current cloud robotics applications have many advantages as mentioned but
also have drawbacks as well. Sometimes there are difficulties in controlling robots
motion as it depends on sensors, feedback of controllers and internet connections.
Apart from that, many times cloud-based applications can get slow due to high
latency responses or a network problem. Last but not least, it can be hacked easily

as it requires real-time execution for the same.

1.1.2 Robots in Hazardous environments

The DOE (U.S. Department of Energy) Environmental Restoration and Waste Man-
agement Robotics Technology Development Program explains that manual work
within hazardous environments is slow and expensive [4]. Worker efficiency is low

due to protective clothing and, in some cases, exposure limits that require work to be

14

accomplished in several minute intervals. Even when exposure limits are not an issue,
fatigue is often induced by the confined spaces and by the highly repetitive nature of
certain tasks. The cost of a given project is increased because of the special materials
needed to protect workers and the environment, and because of the additional wastes
generated in the form of contaminated clothing, rags, tools, etc.. Moreover, the time
required to accomplish missions in a hazardous environment is adversely impacted
not only by low worker efficiency but also by the need to prepare the workers and
instrument the site. For these reasons, the use of robots in hazardous environments
is crucial in terms of occupational safety of workers and the health of rescue and
other operations.

Some robots, such as “PackBot” developed by iRobot [5], "Quince” developed by
Chiba Institute of Technology collaboration with Tohoku University and International
Rescue System [6], and “Survey Runner” developed by TOPY Industries Ltd. [7], are
deployed in the Fukushima Daiichi Nuclear Power Plant. These robots are crawler
type robots and are controlled by the operator who remains in a safe area. They
measure temperature and radioactivity in hazardous zones and also transmit video
and sensory information back to the operator. They are performing duties that are
very important at the beginning of restoration, but there are several tasks that are
hard for them to execute.

In contrast with other authors, we have developed a secure autonomous cloud
brained humanoid Robot for search and rescue operations with the ability to com-
municate with the victim. Our robot has the ability to recognize humans and imme-
diately alert rescuers. We also have developed a secure web application as a control
panel for the rescuers. Our application contains information about the victim (a photo
captured from the robot) but also the real-time position of our humanoid robot. Our
humanoid robot is a key factor for providing emergency psychological aid to the

injured in an emergency area.

1.1.3 Humans and Robots Interaction

There has been some research on human interactions with a humanoid robot [8].
Related research [9] on using robots in autism research mainly focused on behaviors

that increase and maintain children’s engagement in interacting with the robots, such

15

as eye-to-eye gaze. Engagement is not only an issue for autistic children but also for
public interest in STEM education.

Investigating the reactions of children and adults to a robot dog at a shopping mall
[10] showed that children developed positive emotions toward the robot dog at the
visceral level, at the behavioral level, and at the reflective level. The children became
excited when they first saw the robot dog, then they played with the robot dog, and
they expressed the wish to bring the dog home. However, a robot dog has fewer
potential functions than a humanoid robot and plays a significantly different role
from a humanoid robot. It is expected that children’s interactions with a humanoid
robot would differ from that with a robot dog but similarly to how they interact with
other humans.

Studies have shown [11], [12] that trust towards automation affects reliance (.e.
people tend to rely on automation they trust and not use automation they do not
trust). For example, trust has frequently been cited [13], [14] as a contributor to hu-
man decisions about monitoring and using automation. Indeed, within the literature
on trust in automation, complacency is conceptualized interchangeably as the overuse
of automation, the failure to monitor automation, and lack of vigilance. For optimal
performance of a human-automation system, human trust in automation should be
well-calibrated.

In [15], trust is conceived to be an “attitude that an agent (automation or another
person) will help achieve an individual’s goals in a situation characterized by uncer-
tainty and vulnerability.” A majority of research in trust in automation has focused
on the relationship between automation reliability and operator usage often without
measuring the intervening variable, trust. The utility of introducing an intervening
variable between automation performance and operator usage, however, lies in the
ability to make more precise or accurate predictions with the intervening variable
than without it. This requires that trust in automation be influenced by factors in
addition to automation reliability/performance. The three dimensional (Purpose, Pro-
cess, Performance) model proposed by Lee and See [15], for example, presumes that
trust (and indirectly, propensity to use) is influenced by a person’s knowledge of
what the automation is supposed to do (purpose), how it functions (process), and its

actual performance. While such models seem plausible, support for the contribution

16

of factors other than performance has typically been limited to the correlation be-
tween questionnaire responses and automation use. Despite multiple studies in trust
in automation, the conceptualization of trust and how it can be reliably modeled and
measured is still a challenging problem.

In contrast to automation where system behavior has been pre-programmed and
the system performance is limited to the specific actions it has been designed to
perform, autonomous systems/robots have been defined as having intelligence based
capabilities that would allow them to have a degree of self-governance, which enables
them to respond to situations that were not pre-programmed or anticipated in the
design. Therefore, the role of trust in interactions between humans and robots are

more complex and difficult to understand.

1.2 Background

I was one of the three researchers who during the year 2017 worked on creating an
Internet of Things Humanoid Robot Teleoperated by an Open Source Android Appli-
cation [16]. Our paper proposed a novel open source platform Android application
for controlling a humanoid robot, with more features than other research projects, in
remote areas either behind NAT (Network Address Translation) or without it. The
user could view what the robot is seeing through the Android application and could
also move it. Additionally, our system had the ability to deliver real-time audio
through our application.

However, the initial system was quite slow, which meant that the telemanipulation
did not feel natural for the person controlling the robot. As a result, I continued
working on the project during my diploma thesis. The focus of my diploma thesis
was to identify the bottlenecks in the initial system when it comes to communication
between the bridge server but also to add decisive elements for making it an attractive

solution in search and rescue missions.

1.3 Problem Description

The main goal for this thesis is to create a fast and secure system using a cloud

brained humanoid robot programmable to be able to autonomously move and detect

17

lives in emergency scenarios with the potential to communicate with the victim. To
make our humanoid robot more effective, it is important to have a system with low
latency but also a secure encrypted system due to transferring sensitive information.

In this diploma thesis, the communication between the server and the humanoid
robot was attempted using socket programming. The goal is to use the server as an
operational decision center which sends directly to the robot the essential commands.
Part of the focus of the thesis will be to evaluate if our proposal is a suitable tool for

assisting rescuers in hazardous environments searching for lives.

1.4 Equipment

1.4.1 Humanoid Robot

Currently, the cost of a humanoid robot is dissuasive for labs or research teams that
cannot build reliable legged robots. Functional robots must be devised by researchers
and engineers, and specialized companies must manufacture them to ensure good
industrial integration.

Among performant robots, the Asimo humanoid built by Honda may be the most
impressive [17], [18]. It is capable of walking fast, up to 3 km/h forward, change
direction and walk up/down stairs smoothly. It can even reach 7 km/h by adopting a
special running gait. It can also react to external disturbances by adjusting its posture
to keep stability.

The HRP-2 robot manufactured by Kawada Industries is also a good technological
achievement [19], [20], and [21]. It can walk up to 2.5 km/h and can lie down and
get up again by itself. Their successors [22] should help people in their everyday life
or achieve tedious tasks in the place of humans. The size of these robots must be
compatible with human-scale environments.

However, these robots were either not available to researchers or only available
to the few teams that have enough funding to support the cost and maintenance of
such robots. Functional humanoids are somewhat expensive (see Table 1.1). Even
the HOAP small-sized humanoid robot from Fujitsu costs about 50K US $. The
NAO robot has been devised with the concern of cost reduction without sacrificing

quality and performance. It is a completely custom designed robot as the whole

18

process of design and manufacturing is mastered (mechanics, electronics, software).
This allowed costs to be reduced at every stage of design. The company employs
subcontractors to produce plastic parts or electronic circuits on a large scale. One
way to achieve cost reduction was the reuse of the same actuator modules for several
joints. Another way comprised reducing the number of motors without sacrificing
mobility. The robot cost about 10K euros for laboratories. Thanks to mass production

and reduction of functionalities a version will be publicly available for approximately

5K euros.
Table 1.1: Characteristics of Functional Humanoids.

Height(m) Weight(kg) BMI(kg/m?2) Price
KHR-2HV 0.34 1.3 10.9 1K US $
HOAP 0.50 7.0 28.0 50K US $
NAO 0.58 4.5 13.5 10K €
QRIO 0.58 6.5 19.0 NA
ASIMO 1.30 54.0 32.0 NA
REEM-A 1.40 40.0 20.4 NA
HRP-2 1.54 58.0 24.5 400K US $
Human 1.5-2 50-100 18-25 NA

BMI: Body mass index NA: not available

Therefore, the experiments were performed on an Aldebaran NAO humanoid
robot, version 5 (Figure 1.1). The robot is 573.2 mm high and 273.3 mm wide.
From scapula to the end of the hand, the length of the arms is 290 mm. Detailed
information about the geometry of the NAO can be found in Figure 1.2.

Nao has 2 ultrasound devices situated in the chest that provides space information
in 1-meter range distance if an object is situated at 30 degrees from the robot chest
(60 degrees all cone combining both devices).

Also has a bumper which is a contact sensor that help us know if the robot is
touching something, in this case, the bumpers are situated in front of each foot and
they can be used, for example, to know if the robot is kicking the ball or if there are
some obstacles touching our feet.

Nao has 8 Force Sensing Resistors (FSR) situated at the sole of feet. There a 4
FSRs in each foot, then. The value returned for each FSR is a time needed by a
capacitor to charge depending on the FSR resistor value. It is not linear (1/X) and
needs to be calibrated. When no force is applied the sensor reading is 3000 and

when the sensor reading is 200 means that is holding about 3 kg. These sensors are

19

TACTILE SENSORS

SPEAKERS [%2] AND
EARLEDS

INFRARED EMITTER/
RECEIVER AND EYELEDS

FROMT & REAR
MICROPHONES

CAMERAS [¥2]
LATERAL

MICROPHONES [X2]
SHOULDER JOINT

HEAD JOINT

CHEST BUTTON SOMNARS (%21
— ELBOW JOINT
BATTERY
HIP JOINT
WRIST JOINT
PREHEMSILE ACTI
HANDS TACTILE SENSORS

KMNEE JOINT

ANKLE JOINT

SENSOR FRESSURE
BUMPERS [X2] '

Figure 1.1: NAO version 5. (Image from Aldebaran’s documentation)

useful when we are generating movements sequences to know if one position is a
zero moment pose (ZMP) and its sensors can be complemented with inertial sensors.

Nao has a gyrometer and an accelerometer. These sensors are two important
devices when we are talking about motion concisely Kinematics and Dynamics. These
sensors help us to know if the robot is in a stable position or in an unstable one when
the robot is walking

The placement of the two cameras, which our humanoid is equipped with, is such
that they do not overlap. There is a gap of 5.2 degrees between the two fields of
view. The first camera is facing straight forward and the second camera faces down

39.7 degrees. See Figure 1.3 for more details.

1.4.2 Server

The NAO is equipped with a 500 MHz x86 processor from Advanced Micro Devices
Inc. Because of the limited processing capacity of this processor, all data processing

was performed using a cloud server.

20

UpperAmLength

HandOffsetl
12,31 mm

Bbowfsety
_/J t1amm
o HandOffsaf '
culderOffsetY —
) / 98 mm 57.75 mm
|
) HipOffseft [| o)
HipOfsetz - gy ; L\a / LowerAmlength L_ .
Vo | o d 8595 -
ThighLength | "*"'{\
100 mm | i
|
/ ‘
= |
Tibialenath \ 'I
102,90 rmm) ‘
\
! !
FootHeight
45,19 mm 1 { o
(a) Front View (b) Top View

Figure 1.2: Geometry of the NAO. (Image from Aldebaran’s documentation)

The server we used was an Ubuntu 16.04.4 LTS web server with 4096 MB RAM
and 2 CPU cores. The weekly CPU utilization can be found in Figure 1.4.

Our server is on Okeanos [23]. Okeanos is GRNET’s cloud service for the Greek
Research and Academic Community, providing cloud services such as virtual ma-
chines, networks, and storage. It is powered by Synnefo, a complete open source
cloud stack written in Python that provides Compute, Network, Image, Storage ser-
vices. Synnefo manages multiple Ganeti clusters at the backend and uses the Open-
Stack API at the frontend.

The only user-visible Okeanos services are Cyclades and Pithos. Cyclades is the
Compute and Network part of Okeanos. It provides access to the virtual machines
that can be created, booted, shutdown or destroyed on demand, and to networking
functionalities including firewalls, Internet access, and virtual networks. Cyclades also
keeps the statistics of the VMs concerning the compute and network resources that

are used.

21

X T - 7

'[::E::: ettt 1 1 --------_/27/-’/
12 =

o/

63.64

Figure 1.3: Location of the Video Camera. (Image from Aldebaran’s documentation)

1.5 The Following work structure

The rest of this thesis is structured as follows.

Chapter 2 will start by discussing the tools that help us in order to create the code
of our system but also the tools we needed in order to connect to our cloud server.
Afterward, we will continue by introducing the choice of programming languages
and software for this thesis. Some of the choices regarding the socket programming
and the encryption for the communication will be explained. Chapter 2 ends with

some necessary theory related to OpenCV and image processing.

22

CPU Utilization

2.0
2.0

1.4

12 13 14 15 16 17 18

Figure 1.4: CPU Utilization.

In chapter 3 we will talk about our system architecture some choices regarding
movement for the robot will be explained. A large part of chapter 4 is devoted to
obstacle detection. Also, we will talk about important functions that our robot uses.
Finally, we will present how the cloud server and the website works.

At the beginning of chapter 4, we are taking a closer look at how and if our
humanoid robot can work on extreme conditions. Apart from that, we discuss the
experiment we performed where a penetration tester tries to hijack our robot. Last
but not least, we present our SWOT analysis.

In chapter 5, the conclusions of this thesis is presented. The results and sugges-

tions for further work are included.

23

Chapter 2

Background Theory

2.1 Tools

In this section, we will discuss the tools that help us connect to our server. Afterward,

we will talk about the tools we will need in order to create the code of our system.

2.1.1 Winscp

WinSCP (Windows Secure Copy) is a free and open-source SFTP, FTP, WebDAV,
Amazon S3 and SCP client for Microsoft Windows. Its main function is secure file
transfer between a local and a remote computer. Beyond this, WinSCP offers basic file
manager and file synchronization functionality. For secure transfers, it uses Secure
Shell (SSH) and supports the SCP protocol in addition to SFTP.

Development of WinSCP started around March 2000 and continues. Originally
it was hosted by the University of Economics in Prague, where its author worked
at the time. Since July 16, 2003, it is licensed under the GNU GPL and hosted on

SourceForge.net.

2.1.2 Putty

PuTTY is a free and open-source terminal emulator, serial console and network file
transfer application. It supports several network protocols, including SCP, SSH, Telnet,
rlogin, and raw socket connection. It can also connect to a serial port. The name
"PuTTY” has no official meaning.

PuTTY was originally written for Microsoft Windows, but it has been ported

to various other operating systems. Official ports are available for some Unix-like

24

platforms, with work-in-progress ports to Classic Mac OS and macOS, and unofficial
ports have been contributed to platforms such as Symbian, Windows Mobile and

Windows Phone.

PuTTY was written and is maintained primarily by Simon Tatham.

2.1.3 GNU nano

GNU nano is a text editor for Unix-like computing systems or operating environments
using a command line interface. It emulates the Pico text editor, part of the Pine email
client, and also provides additional functionality. Unlike Pico, nano is licensed under
the GNU General Public License (GPL). Released as free software by Chris Allegretta
in 1999, nano became part of the GNU Project in 2001.

2.2 Programming language

During the work on my research project in 2017 [16], it became clear that it was more
beneficial to control the robot by writing scripts in a standard programming language
than to use the Choreographe-program which came with the robot. The main issue
was that the block-based control methods in Choreographe were thought not to be
flexible enough. When wanting to write scripts in a standard programming language,
it was necessary to find the language most suitable for the desired functionality of
the system. The operating system that runs on the NAO robot is called NAOqi.
Aldebaran Robotics has also released a Software Development Kit (SDK) to all users
disposal, which allows the developers to control NAO on a more basic level than the
included Choreographe program. The SDK is compatible with several programming

languages as shown in Figure 2.1.

2.2.1 Python

Python is an interpreted high-level programming language for general-purpose pro-
gramming. Created by Guido van Rossum and first released in 1991, Python has a
design philosophy that emphasizes code readability, notably using significant whites-
pace. It provides constructs that enable clear programming on both small and large

scales.[24]

25

Programming Bindings running on Choregraphe support

Languages Computer Hobot Build Apps Edit code
Python
C++ N =
Java & & &
JavaScript N
]
Gl Mot available

Figure 2.1: Programming languages. (Image from Aldebaran’s documentation)

Python features a dynamic type system and automatic memory management.
It supports multiple programming paradigms, including object-oriented, imperative,
functional and procedural, and has a large and comprehensive standard library.

A simple example of a remote module using a memory proxy is given in Listings
2.1. This short program firstly connects to Naoqi running on the robot on port 9559
and IP address specified in robot-IP. Then it inserts a value 3.14 associated with name

“myValueName” into the shared memory using the memory proxy.

Listing 2.1: Example using Python on Nao.

from naoqi import ALProxy
memProxy = ALProxy’(’ALMemory,robot-IP,9559)

memProxy.insertData’ (’myValueName, 3.14)

2.3 Website Development

To inform the rescuers about the current situation which our humanoid robot is

performing, we created a website using PHP, HTML, CSS, and JavaScript.

2.31 HTML

Hypertext Markup Language (HTML) is the standard markup language for creating
web pages and web applications.
Web browsers receive HTML documents from a web server or from local storage

and render the documents into multimedia web pages. HTML describes the structure

26

of a web page semantically and originally included cues for the appearance of the
document.

HTML elements are the building blocks of HTML pages. With HTML constructs,
images and other objects such as interactive forms may be embedded into the rendered
page. HTML provides a means to create structured documents by denoting structural
semantics for the text such as headings, paragraphs, lists, links, quotes and other
items. HTML elements are delineated by tags, written using angle brackets. Tags
such as and <input> directly introduce content into the page. Other tags such
as <p> surround and provide information about document text and may include
other tags as sub-elements. Browsers do not display the HTML tags but use them to

interpret the content of the page.</p>

Listing 2.2: HTML example.

<IDOCTYPE html>

<html>

<head>

<title>Page Title</title>
</head>

<body>

<h1>This is a Heading</h1>

<p>This is a paragraph.</p>

</body>
</html>

2.3.2 CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the presen-
tation of a document written in a markup language like HTML.

CSS is designed to enable the separation of presentation and content, including
layout, colors, and fonts [25]. This separation can improve content accessibility,

provide more flexibility and control in the specification of presentation characteristics,

27

enable multiple web pages to share formatting by specifying the relevant CSS in a
separate .css file and reduce complexity and repetition in the structural content.

Separation of formatting and content also makes it feasible to present the same
markup page in different styles for different rendering methods, such as on-screen,
in print, by voice (via speech-based browser or screen reader), and on Braille-based
tactile devices. CSS also has rules for alternate formatting if the content is accessed
on a mobile device.

The name cascading comes from the specified priority scheme to determine which

style rule applies if more than one rule matches a particular element.

Listing 2.3: CSS example.

body {

background-color: lightblue;

+

hi {
color: white;
text-align: center;

}

p {
font-family: verdana;
font-size: 20px;

i

2.3.3 JavaScript

JavaScript often abbreviated as JS, is a high-level, interpreted programming language
[26]. Itis a language which is also characterized as dynamic, weakly typed, prototype-
based and multi-paradigm.

Alongside HTML and CSS, JavaScript is one of the three core technologies of

the World Wide Web [26]. JavaScript enables interactive web pages and thus is an

28

essential part of web applications. The vast majority of websites use it and all major
web browsers have a dedicated JavaScript engine to execute it.

As a multi-paradigm language, JavaScript supports event-driven, functional, and
imperative (including object-oriented and prototype-based) programming styles. It
has an API for working with text, arrays, dates, regular expressions, and basic ma-
nipulation of the DOM, but the language itself does not include any I/O, such as
networking, storage, or graphics facilities, relying for these upon the host environ-

ment in which it is embedded.

Listing 2.4: JavaScript example.

<script>
var FIRSTvariable = window.prompt ("PLEASE FILL IN YOUR NAME")
alert ("Your name is " + FIRSTvariable + ".")

</script>

2.3.4 PHP

PHP, Hypertext Preprocessor (or simply PHP), is a server-side scripting language
designed for Web development, but also used as a general-purpose programming
language. It was originally created by Rasmus Lerdorf in 1994, [27]. PHP originally
stood for Personal Home Page, [27] but it now stands for the recursive initialism PHP:
Hypertext Preprocessor.

PHP code may be embedded into HTML code, or it can be used in combina-
tion with various web template systems, web content management systems, and web
frameworks. The PHP code is usually processed by a PHP interpreter implemented as
a module in the web server or as a Common Gateway Interface (CGI) executable. The
web server combines the results of the interpreted and executed PHP code, which may
be any type of data, including images, with the generated web page. PHP code may
also be executed with a command-line interface (CLI) and can be used to implement

standalone graphical applications [28].

Listing 2.5: PHP example.

<IDOCTYPE html>

<html>

29

<body>

<?php
echo "My first PHP script!";

7>

</body>

</html>

2.4 Socket Programming

We used TCP socket programming for the reason that it is necessary for our sys-
tem to use a protocol with small communication overhead for avoiding high latency

responses.

2.4.1 Description

Sockets programming is the fundamental technology behind communications on
TCP/IP networks. A socket is one endpoint of a two-way link between two pro-
grams running on a network. The socket provides a bidirectional communication
endpoint for sending and receiving data with another socket. Socket connections
normally run between two different computers on a local area network (LAN) or
across the internet, but it can also use them for interprocess communication on a

single computer.

2.4.2 Sockets and Addresses

Socket endpoints on TCP/IP networks each have a unique address that is the combi-
nation of an IP address and a TCP/IP port number. Because the socket is bound to
a specific port number, the TCP layer can identify the application that should receive
the data sent to it. When creating a new socket, the socket library automatically
generates a unique port number on that device. The programmer can also specify

port numbers in specific situations.

30

2.4.3 How Server Sockets Work

The server has a socket that is bound to a specific port. The server waits for a different
computer to make a connection request. The client computer knows the hostname
of the server computer and the port number on which the server is listening. The
client computer identifies itself, and—if everything goes right—the server permits the

client computer to connect.

2.4.4 TCP Socket Flow

The diagram which is depicted in Figure 2.2 represents the sequence of socket API

calls and data flow for TCP.

Server

Server creating listening socket

socket
accept

Establishing connection,

three-way handshake
— g connect

il
: lIl EE.
-
~—

Client sending data,
server receiving data

i '

Server sending data,

client receiving data
- recv

Client sending close message
close

close

<
-

Figure 2.2: TCP Socket Flow.

The left-hand column represents the server. On the right-hand side is the client.

Starting in the top left-hand column, note the API calls the server makes to set up a

31

“listening” socket:

e socket()

socket()

bind()

listen()

accept()

A listening socket does just what it sounds like. It listens for connections from
clients. When a client connects, the server calls accept() to accept, or complete, the
connection.

The client calls connect() to establish a connection to the server and initiate the
three-way handshake. The handshake step is important since it ensures that each
side of the connection is reachable in the network, in other words, that the client can
reach the server and vice versa. It may be that only one host, client or server can
reach the other.

In the middle is the round-trip section, where data is exchanged between the
client and server using calls to send() and recv().

At the bottom, the client and server close() their respective sockets.

2.4.5 TCP Communication on Python

* First step is to import the socket module

Listing 2.6: Importing module socket.

import socket

¢ Second step is to create the socket and then the connection.

Listing 2.7: Client program example.

create an INET, STREAMing socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect ((HOST, PORT))

32

Listing 2.8: Server program example.

s = socket.socket(socket.AF INET, socket.SOCK_STREAM)
s.bind ((HOST, PORT))
s.listen (1)

conn, addr = s.accept()

2.5 Advanced Encryption Standard (AES)

In order to have a secure system, we made an encrypted communication between our

humanoid robot and the server. Specifically, we used AES-128.

2.5.1 Cryptography

Cryptography is a practice and study of techniques for secure communication. The
basic elements of a cryptographic algorithm are plaintext, key, and ciphertext. The
data which is present in its natural format is known as plaintext. The key is a
sequence that controls the behavior of the algorithm. Ciphertext is the data which
is unreadable by anyone expect the intended recipients. The modern field of cryptog-
raphy includes symmetric key and asymmetric key cryptographic algorithms [29].

Symmetric key algorithms use the same key for both encryptions of plaintext and
decryption of ciphertext. Across the years, various comprehensive data encryption
techniques have been developed. Some popular examples of symmetric key algo-
rithms include RC4 (Rivest Cipher 4), DES (Data Encryption Standard), AES and
triple DES [29]. AES cipher also known as Rijndael cipher is the most advanced
cryptographic algorithm. [30].

In the United States, AES was announced by the NIST as U.S. FIPS PUB 197
(FIPS 197) on November 26, 2001 [30]. This announcement followed a five-year
standardization process in which fifteen competing designs were presented and eval-

uated before the Rijndael cipher was selected as the most suitable.

2.5.2 AES Algorithm

AES is a symmetric key block cipher existing in various key lengths of 128-bit, 192-

bit, and 256-bit. A block cipher usually consists of two paired algorithms, one for

33

encryption at sender side and other for decryption at the receiver side. As AES is
a symmetric key cipher both sender and receiver share the same key which is also
known as the private key. With the message P and the key K as input, the encryption

algorithm forms the ciphertext C as mentioned below.

C = Ex(P)

The notation as represented above indicates that the ciphertext C is produced by
using encryption algorithm E, as a function of the plaintext P, with the specific function
determined by the value of the key K [31]. The intended receiver in possession of
the key is able to invert the transformation and retrieve the plain text.

The inverse transformation that is performed using decryption algorithm D as a

function of the ciphertext C [31] is represented below.

P = Dg(C)

AES is an iterative cipher comprising computational rounds for both encryption
and decryption. For every additional 32 bits in cipher key, the number of rounds is
increased by one [32]. The number of rounds for various lengths of AES ciphers is

given in Table 2.1. AES 128-bit cipher has been used in the proposed design.

Table 2.1: AES Structure.

Classification | Rounds
AES-128 10
AES-192 12
AES-256 14

The first round process is depicted in Figure 2.3.

2.5.3 Security

Until May 2009, the only successful published attacks against the full AES were side-
channel attacks on some specific implementations. The National Security Agency
(NSA) reviewed all the AES finalists, including Rijndael, and stated that all of them
were secure enough for U.S. Government non-classified data. In June 2003, the U.S.

Government announced that AES could be used to protect classified information [33].

34

Cipher key Plaintext

| !

Ko (128 bits) —— AddRoundKey

SubBytes

ShiftRows

MixColumns

Ki (128 bits) ——> AddRoundKey |

Round |

Figure 2.3: Encryption Process.

The design and strength of all key lengths of the AES algorithm are sufficient to
protect classified information up to the SECRET level. TOP SECRET information will
require the use of either the 192 or 256 key lengths. The implementation of AES in
products intended to protect national security systems and/or information must be

reviewed and certified by NSA prior to their acquisition and use [33].

2.5.4 AES and Python

PyCrypto is a library, which provides secure hash functions and various encryption
algorithms. It supports Python version 2.1 through 3.3.

To install the library PyCrypto you use the command in Listing 2.9.

Listing 2.9: Installation of PyCrypto.

$ pip install pycrypto

Listing 2.10: AES Example.

from Crypto.Cipher import AES

Encryption

encryption_suite = AES.new('This is a key123', AES.MODE_